首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A的伴随矩阵A*≠0,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系
设n阶矩阵A的伴随矩阵A*≠0,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系
admin
2019-02-23
65
问题
设n阶矩阵A的伴随矩阵A
*
≠0,若ξ
1
,ξ
2
,ξ
3
,ξ
4
是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系
选项
A、不存在.
B、仅含一个非零解向量.
C、含有两个线性无关的解向量.
D、含有三个线性无关的解向量.
答案
B
解析
因为ξ
1
≠ξ
2
,知ξ
1
-ξ
2
是Ax=0的非零解,故秩r(A)
*≠0,说
明有代数余子式A
ij
≠0,即丨A丨中有n-1阶子式非零.因此秩r(A)=n-1.那么n-r(A)=1,即Ax=0的基础解系仅含有一个非零解向量.应选(B).
转载请注明原文地址:https://kaotiyun.com/show/6204777K
0
考研数学一
相关试题推荐
求极限
设随机变量X在[0,2]上服从均匀分布,Y服从参数λ=2的指数分布,且X,Y相互独立.(Ⅰ)求关于A的方程a2+Xa+Y=0有实根的概率(答案可用符号表示,不必计算出具体值).(Ⅱ)求P|X+2Y≤3}.
(Ⅰ)已知由参数方程确定了可导函数y=f(x),求证:x=0是y=f(x)的极大值点.(Ⅱ)设F(x,y)在(x0,y0)某邻域有连续的二阶偏导数,且F(x0,y0)=Fx’(x0,y0)=0,Fy’(x0,y0)>0,Fxx’’(x0,y0)<0.由方
盒中盛有10个分币,其中含有0个,1个,2个,…,10个铜币是等可能的.现向盒中放入一个铜币,然后随机从盒中取出一个分币,则这个分币为铜币的概率是
设总体X~U(1,θ),参数θ>1未知,X1,…,Xn是来自总体X的简单随机样本。(Ⅰ)求θ的矩估计量和极大似然估计量;(Ⅱ)求上述两个估计量的数学期望。
设总体X的密度函数为f(χ;θ)=,-∞<χ<+∞,其中θ(θ>0)是未知参数,(X1,X2,…,Xn)为来自总体X的一个简单随机样本。(Ⅰ)利用原点矩求θ的矩估计量;(Ⅱ)求θ的极大似然估计量,并问是否为θ的无偏估计?
设对任意分片光滑的有向闭合曲面片S,均有(y+1)f′(χ)dydz+(y-y2)f(χ)dzdχ+[zyf′(χ)-2zeχ]dχdy=0,其中f(χ)在(-∞,+∞)内具有连续的二阶导数,求f(χ)。
下列结论正确的是().
设n阶(n≥3)矩阵若矩阵A的秩为n-1,则a必为()
若当x→0时,有则a=______.
随机试题
中毒时催吐的禁忌证为
对全国建设工程安全生产实施统一监督管理的部门是( )。
A、16岁以后B、3~6个月C、1~2岁D、4~6岁E、9~12岁;唇腭裂序列治疗程序中腭裂修复术的时间为
目前银行间债券市场债券结算主要采用()的方式。
蒙古族的传统食品分为()。
俗称“金不换”的中药材是人参。()
根据以下情境材料,回答下列问题。17岁的小刚就职于一家汽车美容店,平时帮顾客洗车、跟师傅学贴膜。2019年7月27日,于某来到小刚所在的新阳汽车美容店,于某在该店洗完车后又让小刚帮其拿店里最贵的膜给车贴上。小刚声称,师傅不在,自己技术不精,需要等师傅回来
下列选项中,属于要约的是()。
Foreachrecording,decidewhatthespeaker’sopiniononintroducingnewproductsintothemarketis.Writeoneletter(A-H)n
Crimehasitsowncycles,amagazinere-portedsomeyearsbefore.Policerecordsthat【M1】______werestudiedforfiveyearsov
最新回复
(
0
)