首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下列二次型中,正定二次型是( )。
下列二次型中,正定二次型是( )。
admin
2022-03-23
39
问题
下列二次型中,正定二次型是( )。
选项
A、f
1
(x
1
,x
2
,x
3
,x
4
)=(x
1
-x
2
)
2
+(x
2
-x
3
)
2
+(x
3
-x
4
)
2
+(x
4
-x
1
)
2
B、f
2
(x
1
,x
2
,x
3
,x
4
)=(x
1
+x
2
)
2
+(x
2
+x
3
)
2
+(x
3
+x
4
)
2
+(x
4
+x
1
)
2
C、f
3
(x
1
,x
2
,x
3
,x
4
)=(x
1
-x
2
)
2
+(x
2
+x
3
)
2
+(x
3
-x
4
)
2
+(x
4
+x
1
)
2
D、f
4
(x
1
,x
2
,x
3
,x
4
)=(x
1
-x
2
)
2
+(x
2
-x
3
)
2
+(x
3
+x
4
)
2
+(x
4
+x
1
)
2
答案
D
解析
方法一
选项A:取x
1
=(1,1,1,1)
T
,使得f
1
(x
1
)=0,f
1
不正定。
选项B:取x
2
=(1,-1,1,-1)
T
,使得f
2
(x
2
)=0,f
2
不正定。
选项C:取x
3
=(1,1,-1,-1)
T
,使得f
3
(x
3
)=0,f
3
不正定。
由排除法知,f
4
(x)是正定二次型,应选D。
方法二
对于D,f
4
(x
1
,x
2
,x
3
,x
4
)=(x
1
-x
2
)
2
+(x
2
+x
3
)
2
+(x
3
+x
4
)
2
+(x
4
+x
1
)
2
,令
故x=C
-1
y是可逆线性变换,则由f
4
y
1
2
+y
2
2
+y
3
2
+y
4
2
知,f
4
是正定二次型。
方法三
f
4
(x
1
,x
2
,x
3
,x
4
)=(x
1
-x
2
)
2
+(x
2
+x
3
)
2
+(x
3
+x
4
)
2
+(x
4
+x
1
)
2
=(x
1
-x
2
,x
2
+x
3
,x
3
+x
4
,x
4
+x
1
)
=(x
1
,x
2
,x
3
,x
4
)
=x
T
D
T
Dx=x
T
Ax.
其中A=D
T
D,|D|=
=2≠0,D是可逆矩阵。
故知A=D
T
D是正定矩阵,f
4
是正定二次型。
方法四
写出各二次型的对应矩阵,利用顺序主子式是否都大于零来判别。
转载请注明原文地址:https://kaotiyun.com/show/6BR4777K
0
考研数学三
相关试题推荐
设un=(一1)nln(1+),则级数
设x→a时f(x)与g(x)分别是x一a的n阶与m阶无穷小,则下列命题中,正确的个数是()①f(x)g(x)是x一a的n+m阶无穷小.③若n≤m,则f(x)+g(x)是x一a的n阶无穷小.
函数f(x)=(t2一t)dt(x>0)的最小值为()
设随机变量X,Y相互独立,X~U(0,2),Y~E(1),则P(X+Y>1)等于().
已知,A*是A的伴随矩阵,若r(A*)=1,则a=()
设A,B是n阶矩阵,则下列结论正确的是()
(15年)(Ⅰ)设函数u(χ),v(χ)可导,利用导数定义证明[u(χ)v(χ)]′=u′(χ)v(χ)+u(χ)v′(χ);(Ⅱ)设函数u1(χ),u2(χ),…,un(χ)可导,f(χ)=u1(χ)u2(χ)…un(χ),写出f(χ)的求导公
设有矩阵Am×n,Bn×m,已知En一AB可逆,证明:En—BA可逆,且(En—BA)-1=En+B(Em一AB)-1A.
设曲线y=e-x(x≥0)(1)把曲线y=e-x,x轴,y轴和直线x=ξ(ξ>0)所围成平面图形绕x轴旋转一周,得一旋转体,求此旋转体体积V(ξ);求满足(2)在此曲线上找一点,使过该点的切线与两个坐标轴所夹平面图形的面积最大,并求出该面积.
设f(x)满足。(Ⅰ)讨论f(x)在(-∞,+∞)是否存在最大值或最小值,若存在则求出;(Ⅱ)求y=f(x)的渐近线方程。
随机试题
脓胸纤维板剥除术的适应证是
成人社区获得性肺炎中,主要病原体是()
A.药士的职责B.药师的职责C.从业药师的职责D.驻店药师的职责E.临床药师的职责开展治疗药物监测,进行药动学计算,设计个体化给药方案的是
定性和定量相结合的方法有()。
下列荷载属于可变作用荷载的有()。
会计人员工作交接中,在移交点收时如果有价证券面额与发行价不一致时,按照()交接。
位于市区的某集团总部为增值税一般纳税人,拥有外贸进m口资格。2021年6月经营业务如下:(1)内销一批服装,向客户开具的增值税发票的金额栏中分别注明了价款300万元、折扣额30万元。(2)取得统借统还利息收入50万元、保本理财产品利息收入10.6万元。
为班级授课制奠定理论基础的是()
设f(x)=,求f(x)的间断点并判断其类型.
=__________。
最新回复
(
0
)