λ取何值时,方程组无解,有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.

admin2020-04-30  12

问题 λ取何值时,方程组无解,有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.

选项

答案原方程组系数矩阵的行列式为 [*] 故当λ≠1且λ≠-4/5时,方程组有唯一解. 当λ=1时,原方程组为 [*] 对其增广矩阵施以初等行变换,有 [*] 因此,当λ=1时,原方程组有无穷多解,其通解为 x=(1,-1,0)T+k(0,1,1)T, 其中k为任意常数. 当λ=-4/5时,原方程组的同解方程组为 [*] 对其增广矩阵施以初等行变换,有 [*] 由此可知当λ=-4/5时,原方程组无解. 本题也可对原方程组的增广矩阵施以初等行变换得 [*] 讨论:①当λ=-4/5时,r(A)=2≠r(B)=3.故原方程组无解; ②当λ≠1,且λ≠-4/5时,r(A)=r(B)=3,原方程组有唯一解; ③当λ=1时,有 [*] 显然,r(A)=r(B)=2<3,原方程组有无穷多解,其通解为x=k(0,1,1)T+(1,-1,0)T,其中k为任意常数.

解析 本题主要考查非齐次线性方程组有解的判定及解的求法.将方程组写成矩阵的形式Ax=b.当|A|≠0时,Ax=b有唯一解;当|A|=0时,方程组Ax=b有无穷多解还是无解要看增广矩阵的秩是否等于系数矩阵的秩.
转载请注明原文地址:https://kaotiyun.com/show/6Bv4777K
0

最新回复(0)