首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=(1一a)x12+(1—a)x22+2x32+2(1+a)x1x2的秩为2。 (Ⅰ)求a的值; (Ⅱ)求正交变换x=Qy,把f(x1,x2,x3)化为标准形; (Ⅲ)求方程f(x1,x2,x3)=0的解。
已知二次型f(x1,x2,x3)=(1一a)x12+(1—a)x22+2x32+2(1+a)x1x2的秩为2。 (Ⅰ)求a的值; (Ⅱ)求正交变换x=Qy,把f(x1,x2,x3)化为标准形; (Ⅲ)求方程f(x1,x2,x3)=0的解。
admin
2017-12-29
44
问题
已知二次型f(x
1
,x
2
,x
3
)=(1一a)x
1
2
+(1—a)x
2
2
+2x
3
2
+2(1+a)x
1
x
2
的秩为2。
(Ⅰ)求a的值;
(Ⅱ)求正交变换x=Qy,把f(x
1
,x
2
,x
3
)化为标准形;
(Ⅲ)求方程f(x
1
,x
2
,x
3
)=0的解。
选项
答案
(Ⅰ)二次型矩阵 [*] 二次型的秩为2,则二次型矩阵A的秩也为2,从而 [*] 因此a=0。 (Ⅱ)由(Ⅰ)中结论a=0,则 [*] 由特征多项式 [*] =(λ一2)[(λ一1)
2
—1]=λ(λ一2)
2
得矩阵A的特征值λ
1
=λ
2
=2,λ
3
=0。 当λ=2,由(2E—A)x=0得特征向量α
1
=(1,1,0)
T
,α
2
=(0,0,1)
T
。 当λ=0,由(0E—A)x=0得特征向量α
3
=(1,一1,0)
T
。 容易看出α
1
,α
2
,α
3
已两两正交,故只需将它们单位化: γ
1
=[*](1,1,0)
T
,γ
2
=(0,0,1)
T
,γ
3
=[*](1,一1,0)
T
。 那么令Q=(γ
1
,γ
2
,γ
3
)=[*] 则在正交变换x=Qy下,二次型f(x
1
,x
2
,x
3
)化为 标准形f(x
1
,x
2
,x
3
)=x
T
Ax=y
T
Λy=2y
1
2
+2y
2
2
。 (Ⅲ)由f(x
1
,x
2
,x
3
)=x
1
2
+x
2
2
+2x
3
2
+2x
1
x
2
=(x
1
+x
2
)
2
+2x
3
2
=0,得[*] 所以方程f(x
1
,x
2
,x
3
)=0的通解为k(1,一1,0)
T
,其中k为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/6LX4777K
0
考研数学三
相关试题推荐
将y=sinx展开为的幂级数.
求方程=(1一y2)tanx的通解以及满足y(0)=2的特解.
设a1,a2,…,an是互不相同的实数,且求线性方程组AX=b的解.
证明:∫01dx∫01(xy)xydy=∫01xxdx.
设α1,α2,…,αn-1是n个实数,方阵若A有n个互异的特征值λ1,λ2,…,λn,求可逆阵P使P-1AP=A.
设α1,α2,…,αn-1是n个实数,方阵若λ是A的特征值,证明:ξ=[1,λ,λ2,…,λn-1]T是A的对应于特征值λ的特征向量;
已知,求A的特征值和特征向量,a为何值时,A相似于A,a为何值时,A不能相似于A.
假设某季节性商品,适时地售出1千克可以获利s元,季后销售每千克净亏损t元。假设一家商店在季节内该商品的销售量X(千克)是一随机变量,并且在区间(a,b)内均匀分布。问季初应安排多少这种商品,可以使期望销售利润最大?
求不定积分
试证明:曲线y=恰有三个拐点,且位于同一条直线上.
随机试题
示范存在缺陷的原因。
当远端回肠被切除后将导致胆汁酸在
主要在回肠吸收的物质是
关于惊厥的描述哪项是错误的()
产热过多所致的发热常见于
关于抗原结合价错误的是
患者男,60岁。车祸致颅脑损伤伴下肢粉碎性骨折。深昏迷,营养状况差,轻度水肿。评估见骶尾部皮肤紫红色,有皮下硬结,并有小水疱。患者目前的皮肤状况处于()
实施培训课程的管理,应当包括()。
中国人喜欢用石头来代表仪式与权力,一个突出的例证是,人们喜欢在石头上进行书法创作,取_______的材料气质,达到永存文字的理想。石头取材方便、质地坚硬、体量巨大、保存容易、镌刻困难、端正严肃、_______等特性,让石头上的书法与其他材料上的书法有所区别
Yournewproductwouldnothavesoldsowellbutforalotofadvertisementsweputonthetelevision.
最新回复
(
0
)