首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=(1一a)x12+(1—a)x22+2x32+2(1+a)x1x2的秩为2。 (Ⅰ)求a的值; (Ⅱ)求正交变换x=Qy,把f(x1,x2,x3)化为标准形; (Ⅲ)求方程f(x1,x2,x3)=0的解。
已知二次型f(x1,x2,x3)=(1一a)x12+(1—a)x22+2x32+2(1+a)x1x2的秩为2。 (Ⅰ)求a的值; (Ⅱ)求正交变换x=Qy,把f(x1,x2,x3)化为标准形; (Ⅲ)求方程f(x1,x2,x3)=0的解。
admin
2017-12-29
43
问题
已知二次型f(x
1
,x
2
,x
3
)=(1一a)x
1
2
+(1—a)x
2
2
+2x
3
2
+2(1+a)x
1
x
2
的秩为2。
(Ⅰ)求a的值;
(Ⅱ)求正交变换x=Qy,把f(x
1
,x
2
,x
3
)化为标准形;
(Ⅲ)求方程f(x
1
,x
2
,x
3
)=0的解。
选项
答案
(Ⅰ)二次型矩阵 [*] 二次型的秩为2,则二次型矩阵A的秩也为2,从而 [*] 因此a=0。 (Ⅱ)由(Ⅰ)中结论a=0,则 [*] 由特征多项式 [*] =(λ一2)[(λ一1)
2
—1]=λ(λ一2)
2
得矩阵A的特征值λ
1
=λ
2
=2,λ
3
=0。 当λ=2,由(2E—A)x=0得特征向量α
1
=(1,1,0)
T
,α
2
=(0,0,1)
T
。 当λ=0,由(0E—A)x=0得特征向量α
3
=(1,一1,0)
T
。 容易看出α
1
,α
2
,α
3
已两两正交,故只需将它们单位化: γ
1
=[*](1,1,0)
T
,γ
2
=(0,0,1)
T
,γ
3
=[*](1,一1,0)
T
。 那么令Q=(γ
1
,γ
2
,γ
3
)=[*] 则在正交变换x=Qy下,二次型f(x
1
,x
2
,x
3
)化为 标准形f(x
1
,x
2
,x
3
)=x
T
Ax=y
T
Λy=2y
1
2
+2y
2
2
。 (Ⅲ)由f(x
1
,x
2
,x
3
)=x
1
2
+x
2
2
+2x
3
2
+2x
1
x
2
=(x
1
+x
2
)
2
+2x
3
2
=0,得[*] 所以方程f(x
1
,x
2
,x
3
)=0的通解为k(1,一1,0)
T
,其中k为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/6LX4777K
0
考研数学三
相关试题推荐
已知一2是的特征值,其中b≠0是任意常数,则x=________.
将y=sinx展开为的幂级数.
若函数φ(x)及ψ(x)是n阶可微的,且φ(k)(x0)=ψ(k)(x0),k=0,1,2,…,n一1.又x>x0时,φ(n)(x)>ψ(k)(x0).试证:当x>x0时,φ(x)>ψ(x).
设函数f(x)在闭区间[a,b]上连续(a,b>0),在(a,b)内可导,试证:在(a,b)内至少有一点ξ,使等式=f(ξ)一ξf’(ξ)成立.
求极限
求下列极限.
求下列极限.
设数列{an)单调减少,的收敛域为()
求的连续区间、间断点并判别其类型.
随机试题
A、4πB、3πC、2πD、πA
护士给予慢性心衰患者的饮食指导不妥的是
金本位制下的汇率制度属于()。
在理解重要性概念时,下列表述中不正确的是()。
人际交往中,在作介绍时,一般()要等()先伸手后才能握手。()
决定教育永恒性的是教育的_______。
毛泽东思想是马克思列宁主义与中国实际相结合的产物,它对马克思主义既有继承,又有发展创新,在政治、经济、军事、文化以及哲学各方面,都有自己独创性的成果。下列属于毛泽东思想关于社会主义革命和社会主义建设理论中独创性成就的是()。
一、注意事项1.申论考试是对应试者阅读理解能力、综合分析能力、提出和解决问题能力和文字表达能力进行考查的考试。2.作答参考时限:阅读材料40分钟,答卷110分钟。3.仔细阅读给定资料,按照后面提出的申论要求依次作答。二、给定资料
奥地利科学家魏格纳偶然发现地图上大西洋西岸的海岸线凹凸相反,经过查阅资料和苦苦思索,形成了一种设想:由于某种驱动力,把原本连在一起的非洲和南美洲两块大陆分裂开来,天长日久,便为大西洋所隔,于是提出了“大陆漂移”说。这段话说明
A、Itwillconfineustothefourwalls.B、Wewillhaveunlimitedfreedom.C、Therichwillbeevenricher.D、Educationwillbewi
最新回复
(
0
)