首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0. 证明:向量组α,Aα,…,Ak-1α是线性无关的.
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0. 证明:向量组α,Aα,…,Ak-1α是线性无关的.
admin
2016-10-26
83
问题
设A是n阶矩阵,若存在正整数k,使线性方程组A
k
x=0有解向量α,且A
k-1
α≠0.
证明:向量组α,Aα,…,A
k-1
α是线性无关的.
选项
答案
(定义法,同乘) 设有常数l
1
,l
2
,…,l
k
,使得 l
1
α+l
2
Aα+…+l
k
A
k-1
α=0, 用A
k-1
左乘上式,得A
k-1
(l
1
α+l
2
Aα+…+l
k
A
k-1
α)=0. 由A
k
α=0,知A
k+1
α=A
k+2
α=…=0,从而有l
1
A
k-1
α=0.因为A
k-1
α≠0,所以l
1
=0. 类似可证l
2
=l
3
=…=l
k
=0,故向量组α,Aα,…,A
k-1
α线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/6Lu4777K
0
考研数学一
相关试题推荐
甲袋中有2个白球,乙袋中有2个黑球,每次从各袋中任取一球交换后放人另一袋中,共交换3次,用X表示3次交换后甲袋中的白球数,求X的概率分布.
设f(x)在(a,b)内是严格下凸函数,证明对任何x1,x2∈(a,b),x1<x<x2,有不等式成立.
设A为n阶矩阵,满足AAT=E(E为n阶单位阵,AT是A的转置矩阵),丨A丨
设X1,X2,X3,X4是来自正态总体N(0,22)的简单随机样本,X=a(X1-2X2)2+b(3X3-4X4)2,则当a=__________,b=____________时,统计量X服从X2分布,其自由度为_____________.
设随机变量X服从正态分布N(μ,σ2),则随σ的增大,概率P{丨x-μ丨
由结论可知,若令φ(x)=xf(x),则φˊ(x)=f(x)+xfˊ(x).因此,只需证明φ(x)在[0,1]内某一区间上满足罗尔定理的条件.令φ(x)=xf(x),由积分中值定理可知,存在η∈(0,1/2)使[*]
假设由自动生产线加工的某种零件的内径X(单位:毫米)服从正态分布N(μ,1),内径小于10或大于12的为不合格品,其余为合格品,销售每件合格品获利,销售每件不合格品亏损,已知销售利润T(单位:元)与销售零件的内径X有如下关系:T=问平均内径μ取何值时,销售
由题设,需先求出f(x)的解析表达式,再求不定积分.[*]
设f(x)是连续函数,则=__________.
某闸门的形状与大小如右图所示,其中直线l为对称轴,闸门的上部为矩形ABCD,下部由二次抛物线与线段AB所围成,当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的压力之比为5:4,闸门矩形部分的高^应为多少m(米)?
随机试题
企业人力资源战略规划编制的程序包括
A.血清总胆红素增高、非结合胆红素增高B.血清总胆红素增高、结合胆红素增高C.两者均有D.两者均无(1994年)Gilbert综合征
患者,男,66岁。自退休后,几乎不与朋友联系,对各种社会活动也不感兴趣,对外界任何事物均不关心。患者采用的退休适应方式是
投标文件技术部分格式主要包括()。
【背景材料】某工程设计公司在进行某厂房的设计时,有A,B,C等3种方案可供选择。经专家估算,3种设计方案的成本分别为227.4万元、274.6万元、236.0万元。对以上3个设计方案确定了造价、结构体系、建筑造型、平面布置、设备及智能化系统5项指标
Excel2003单元格的数据类型可以是()。
当采购员预借差旅费时,企业的资产总额就会相应减少。 ( )
未经国家主管部门批准,非法经营证券、期货或者保险业务的,构成擅自设立金融机构罪。( )
关于我国公证制度,下列哪一选项是错误的?()
定位到同一字段第一条记录中的快捷键是()。
最新回复
(
0
)