首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αk(k<n)是Rn中七个线性无关的列向量,证明:存在n阶满秩方阵P,使得P以α1,α2,…,αk为其前五列.
设α1,α2,…,αk(k<n)是Rn中七个线性无关的列向量,证明:存在n阶满秩方阵P,使得P以α1,α2,…,αk为其前五列.
admin
2016-04-11
61
问题
设α
1
,α
2
,…,α
k
(k<n)是R
n
中七个线性无关的列向量,证明:存在n阶满秩方阵P,使得P以α
1
,α
2
,…,α
k
为其前五列.
选项
答案
取齐次线性方程组[*]=0的基础解系毒ξ
1
,…,ξ
n—k
,则可证α
1
,…,α
k
,ξ
1
,…,ξ
n—k
线性无关:设λ
1
α
1
+…+λ
k
α
k
+μ
1
ξ
1
+…+μ
n—k
ξ
n—k
=0,两墙左乘(λ
1
α
1
+…+λ
k
α
k
)
T
,并利用α
1
ξ
1
=0,得‖ λ
1
α
1
+…+λ
k
α
k
‖
2
=0,→λ
1
α
1
+…+λ
k
α
k
)
T
=0,而α
1
,…,α
k
线性无关,故有λ
1
=…=λ
k
=0,→μ
1
ξ
1
+…+μ
n—k
ξ
n—k
=0,又ξ
1
+…+ξ
n—k
线性无关,故有μ
1
=…=μ
n—k
=0,于是证得α
1
,…,α
k
,ξ
1
,…,ξ
n—k
线性无关,令P=[α
1
… α
k
ξ
1
… ξ
n—k
],则P为满秩方阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/6Nw4777K
0
考研数学一
相关试题推荐
设有微分方程y’-2y=ψ(x),其中ψ(x)=求在(-∞,+∞)内连续的函数y(x),使其在(-∞,1)及(1,+∞)内都满足所给的方程,且满足条件y(0)=0.
设函数y=y(x)满足△y=△x+o(△x),且y(1)=1,则∫01y(x)dx=________.
设fn(x)=x+x2+…+xn(n≥1).证明:方程fn(x)=1有唯一的正根xn.
设函数f(x)连续,且f’(0)>0,则存在δ>0使得()。
设A是4×5矩阵,ξ1=[1,一1,1,0.0]T,ξ2=[一1,3,一1,2,0]T,ξ3=[2,1,2,3,0]T,ξ4=[1,0,一1,1,一2]T,ξ5=[-2,4,3,2,5]T都是齐次线性方程组Ax=0的解,且Ax=0的任一解向量均可由ξ1,ξ
设A=,其中a<0,方程组Ax=0有非零解,A*是A的伴随矩阵,则方程组A*x=0的基础解系为()
以y=C1ex+C2cos2x+C3sin2x为通解的常系数齐次线性微分方程可以为()
设都是线性方程组AX=0的解向量,只要系数矩阵A为().
利用变量替换u=x,v=y/x,可将方程化成新方程为().
商店收进甲厂生产的产品30箱,乙厂生产的同种产品20箱,甲厂产品每箱装100个,废品率为0.06,乙厂产品每箱120个,废品率为0.05.若将所有产品开箱混装,任取一个其为废品的概率
随机试题
承载板法测定土基回弹模量的试验方法,预压值采用(),稳压时间为(),使承载板与土基紧密接触。
12岁,男性,胸片示左下肺3cm肿块,肿块表面光滑、质地均匀,CT平扫为软组织密度,CT增强明显强化,最可能的诊断是
下列药物中,主入肝经气分,善散肝气之郁结,可平肝气之横逆,为疏肝解郁、行气止痛之要药的是
下列各项中,符合车船税征收管理规定的有()。
下列关于个人住房贷款发展历程的说法,正确的有()。
区分人类历史上不同社会形态的根本标志是()。
2010年4月,某市劳动行政部门在对甲公司进行例行检查时,发现甲公司存在下列问题:(1)有8年工作年限的张某提出年休假5天,甲公司认为,由于张某2009年请病假累计已达40天,拒绝了张某的请求。(2)2009年国庆节,甲公司安排王某(日工资
确定我国经济体制改革目标的核心问题是正确认识和处理()。
生命的定义就是拥有明天。它不像“未来”那么过于遥远与空洞。它就守候在门外。走出了今天便进入了全新的明天。明天会是怎样呢?当然,多半还要看你自己的,你快乐它就是快乐的一天,你无聊它就是无聊的一天,你匆忙它就是匆忙的一天;如果你静下心来就会发现,你不能改变昨天
Withthousandsofyearsofhistoryandmythology【C1】______,Athens—named【C2】______theolive-tree-lovingAthena(goddesso
最新回复
(
0
)