首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αk(k<n)是Rn中七个线性无关的列向量,证明:存在n阶满秩方阵P,使得P以α1,α2,…,αk为其前五列.
设α1,α2,…,αk(k<n)是Rn中七个线性无关的列向量,证明:存在n阶满秩方阵P,使得P以α1,α2,…,αk为其前五列.
admin
2016-04-11
45
问题
设α
1
,α
2
,…,α
k
(k<n)是R
n
中七个线性无关的列向量,证明:存在n阶满秩方阵P,使得P以α
1
,α
2
,…,α
k
为其前五列.
选项
答案
取齐次线性方程组[*]=0的基础解系毒ξ
1
,…,ξ
n—k
,则可证α
1
,…,α
k
,ξ
1
,…,ξ
n—k
线性无关:设λ
1
α
1
+…+λ
k
α
k
+μ
1
ξ
1
+…+μ
n—k
ξ
n—k
=0,两墙左乘(λ
1
α
1
+…+λ
k
α
k
)
T
,并利用α
1
ξ
1
=0,得‖ λ
1
α
1
+…+λ
k
α
k
‖
2
=0,→λ
1
α
1
+…+λ
k
α
k
)
T
=0,而α
1
,…,α
k
线性无关,故有λ
1
=…=λ
k
=0,→μ
1
ξ
1
+…+μ
n—k
ξ
n—k
=0,又ξ
1
+…+ξ
n—k
线性无关,故有μ
1
=…=μ
n—k
=0,于是证得α
1
,…,α
k
,ξ
1
,…,ξ
n—k
线性无关,令P=[α
1
… α
k
ξ
1
… ξ
n—k
],则P为满秩方阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/6Nw4777K
0
考研数学一
相关试题推荐
设f(x)在[a,b]上连续,且对任意的t∈[0,1]及任意的x1,x2∈[a,b]满足:f[tx1+(1-t)x2]≤tf(x1)+(1-t)f(x2).证明:
设f(x)在区间[a,b]上二阶可导且f"(x)≥0,证明:.
设有三个线性无关的特征向量,求a及An.
设是正交矩阵,b>0,c>0求a,b,c的值;
设z=z(x,y)是由f(y-x,yz)=0确定的,其中f对各个变量有连续的二阶偏导数,求
求二分之一球面x2+y2+z2=R2,x≥0,y≥0,z≥0的边界曲线的重心,设曲线的线密度ρ=1.
设函数f(u)可导,y=f(sinx)当自变量x在x=π/6处取得增量△x=,相应的函数增量△y,的线性主部为1,则f’(1/2)=().
斜边长为2a的等腰直角三角形平板,铅直地沉没在水中,且斜边与水面相齐,设重力加速度为g,水密度为ρ,则该平板一侧所受的水的压力为________.
设一盒子中有5个球,编号分别为1,2,3,4,5.如果每次等可能地从中任取一球,记录其编号后放回,求3次取球得到的最大编号X的概率分布.如果一次从袋中任取3个球,求这3个球中最大编号y的概率分布.
设X1和X2是任意两个相互独立的连续型随机变量,它们的概率密度分别为f1(x)与f2(x),分布函数分别为F1(x)与F2(x),则
随机试题
检修时检测汽封水平方向垂直间隙时,用特制的窄塞尺测量,塞尺塞入深度一般为20~40mm,不要塞得太紧。
激励本身取决于主客观两个方面的因素,主观方面的因素包括员工的____、_____、______、_____、_____。
俗话说:“人逢喜事精神爽。”这是哪一种情绪状态【】
手术后深静脉血栓形成的分类是
背景材料:某高速公路设计车速120km/h,路面面层为三层式沥青混凝土结构。施工企业为公路交通大型企业专业施工队伍,设施精良。为保证工程施工质量,防治沥青路面施工中沥青混合料摊铺时发生离析、沥青混凝土路面压实度不够、平整度及接缝明显,施工单位在施工准备、
账户的对应关系是指()。
下列关于生物常识的说法错误的是:
求方程karctanx—x=0不同实根的个数,其中k为参数。
Thecountry’sinadequatementalhealthsystemgetsthemostattentionafterinstancesofmassviolencethatthenationhasseen
Agoodbookmaydrawourattentionsocompletelythatweforgetoursurroundingsandevenouridentityforthetimebeing.
最新回复
(
0
)