首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αk(k<n)是Rn中七个线性无关的列向量,证明:存在n阶满秩方阵P,使得P以α1,α2,…,αk为其前五列.
设α1,α2,…,αk(k<n)是Rn中七个线性无关的列向量,证明:存在n阶满秩方阵P,使得P以α1,α2,…,αk为其前五列.
admin
2016-04-11
59
问题
设α
1
,α
2
,…,α
k
(k<n)是R
n
中七个线性无关的列向量,证明:存在n阶满秩方阵P,使得P以α
1
,α
2
,…,α
k
为其前五列.
选项
答案
取齐次线性方程组[*]=0的基础解系毒ξ
1
,…,ξ
n—k
,则可证α
1
,…,α
k
,ξ
1
,…,ξ
n—k
线性无关:设λ
1
α
1
+…+λ
k
α
k
+μ
1
ξ
1
+…+μ
n—k
ξ
n—k
=0,两墙左乘(λ
1
α
1
+…+λ
k
α
k
)
T
,并利用α
1
ξ
1
=0,得‖ λ
1
α
1
+…+λ
k
α
k
‖
2
=0,→λ
1
α
1
+…+λ
k
α
k
)
T
=0,而α
1
,…,α
k
线性无关,故有λ
1
=…=λ
k
=0,→μ
1
ξ
1
+…+μ
n—k
ξ
n—k
=0,又ξ
1
+…+ξ
n—k
线性无关,故有μ
1
=…=μ
n—k
=0,于是证得α
1
,…,α
k
,ξ
1
,…,ξ
n—k
线性无关,令P=[α
1
… α
k
ξ
1
… ξ
n—k
],则P为满秩方阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/6Nw4777K
0
考研数学一
相关试题推荐
设f(x)在(-∞,+∞)上有定义,且对任意的x,y∈(-∞,+∞)有|f(x)-f(y)|≤|x-y|,证明:|∫abf(x)dx-(b-a)f(a)|≤(b-a)2.
设矩阵为A*对应的特征向量。求a,b及α对应的A*的特征值。
设A为3阶实对称矩阵,存在可逆矩阵,使得P-1AP=diag(1,2,-1),A的伴随矩阵A*有特征值λ0,对应的特征向量为α=(2,5,-1)T。求a,b,λ0,的值;
已知存在且不为零,其充要条件是常数P=___________,此时该极限值为____________.
(Ⅰ)设f(x),g(x)在点x=x0处可导且f(x0)=g(x0)=0,f′(x0)g′(x0)<0,求证:x=x0是f(x)g(x)的极大值点.(Ⅱ)求函数F(x)=(x∈(—∞,+∞))的值域区间
设矩阵A是秩为2的4阶矩阵,又α1,α2,α3是线性方程组Ax=b的解,且α1+α2—α3=(2,0,—5,4)T,α2+2α3=(3,12,3,3)T,α3—2α1=(2,4,1,一2)T,则方程组Ax=b的通解x=___
一质量为m的飞机,着陆时的水平速度为v0,经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为k>0).问从着陆点算起,飞机滑行的最长距离是多少?
一根长度为1的细棒位于x轴的区间[0,1]上,若其线密度ρ(x)=-x2+2x+1,则该细棒的质心横坐标=________.
自动生产线在调整后出现废品的概率为P,当在生产过程中出现废品时,立即重新进行调整,求在两次调整之间生产的合格品数X的分布列及其数学期望.
随机试题
在征收和国有化的补偿问题上,发达国家主张的“赫尔原则"包括()
在Access2010中,报表是按_______设计的。
下述有关肺间质疾病叙述不正确的是
A.小活络丸B.四妙丸C.颈复康颗粒D.天麻丸E.五苓散以上哪种中成药属于温化水湿剂()
无效民事行为的特征有()。
某设备工程需安装四台卧式氨储罐。在编制安装工程预算时,有关资料如表4-24所示。 问题:计算该设备安装工程的预算造价(措施费按直接工程费的10%计算,其中人工费占50%;间接费按人工费的27%计取,利润按人工费的80%计取,综合税
机电安装工程中需作经济分析的主要施工方案包括()。
根据会计档案管理办法的规定,会计档案保管期限分为永久和定期两类。定期保管的会计档案,其最长期限是( )。
根据以下资料,回答下列小题。国家统计局数据显示,2012年我国国内生产总值(GDP)为51.93万亿元,比上年增加4.78万亿元。其中,消费对GDP增长的贡献率为51.8%,投资贡献率为50.4%,净出口贡献率为-2.2%。根据经济学理
Themedicine______hispainbutdidnotcurehisillness.(2015年北京航空大学考博试题)
最新回复
(
0
)