首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:(I)若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得 (Ⅱ)若函数φ(x)具有二阶导数,且满足φ(2)>φ(1),则至少存在一点ξ∈(1,3),使得φ"(ξ)<0。
证明:(I)若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得 (Ⅱ)若函数φ(x)具有二阶导数,且满足φ(2)>φ(1),则至少存在一点ξ∈(1,3),使得φ"(ξ)<0。
admin
2020-02-28
55
问题
证明:(I)若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得
(Ⅱ)若函数φ(x)具有二阶导数,且满足φ(2)>φ(1),
则至少存在一点ξ∈(1,3),使得φ"(ξ)<0。
选项
答案
(I)设M和m分别为连续函数f(x)在闭区间[a,b]上的最大值和最小值,即 m≤f(x)≤M,x∈[a,b]。 根据定积分的性质,有 [*] 根据连续函数的介值定理得,至少存在一点η∈[a,b],使得 [*] 即有 [*] (Ⅱ)由(I)的结论可知,至少存在一点η∈[2,3],使得 [*] 又因为[*]所以η∈(2,3]。 对函数φ(x)在[1,2],[2,1,7]上分别应用拉格朗日中值定理,并结合φ(2)>φ(1),φ(2)>φ(η)得 [*] 在[ξ
1
,ξ
2
]上对导函数φ’(x)应用拉格朗日中值定理,得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/6PA4777K
0
考研数学二
相关试题推荐
已知n阶矩阵A满足A3=E.(1)证明A2-2A-3E可逆.(2)证明A2+A+2E可逆.
已知矩阵与相似.求一个满足P-1AP=B的可逆矩阵P.
设A是n阶非零实矩阵(n>2),并且AT=A*,证明A是正交矩阵.
设A是n阶矩阵,满足AAT=E(E是n阶单位矩阵,AT是A的转置矩阵),|A|<0,求|A+E|.
由曲线y=lnx及直线x+y=e+1,y=0所围成的平面图形的面积可用二重积分表示为______,其值等于_________.
某闸门的形状与大小如图1—3—7所示,其中直线l为对称轴,闸门的上部为矩形ABCD,下部由二次抛物线与线段AB所围成.当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的水压力之比为5:4,闸门矩形部分的高应为多少米?
矩形闸门宽a米,高h米,垂直放在水中,上边与水面相齐,闸门压力为().
在椭圆内嵌入有最大面积的四边平行于椭圆轴的矩形,求该最大面积.
[2002年]某闸门的形状与大小如图1.3.5.16所示,其中直线l为对称轴,闸门的上部为矩形ABCD,下部由二次抛物线与线段AB所组成,当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的水压力之比为5:4,闸门矩形部分的高h应为多
随机试题
A.使血糖降低B.促进蛋白质合成C.两者都是D.两者都不是糖皮质激素的作用是
食物特殊动力作用效应最大的食物是
圆管紊流粗糙区的沿程损失系数λ()。
某一产品在不同的国家可能处于产品生命周期的不同阶段。()
低精度勘察阶段的探矿权评估方法主要包括()。
所有的白马都是马,黑马是马,所以白马是黑马。下列选项中所犯逻辑错误与上述推理最为相似的是()。
Thekeyproceduresininternallogisticsare().
社会认知论源于()。
宋代词人辛弃疾有词日“众里寻他千百度,蓦然回首,那人却在,灯火阑珊处。”从这句词中可以推出当时最可能的节日是()。
下列选项中不属于结构化程序设计原则的是
最新回复
(
0
)