首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B都是对称矩阵,并且E+AB可逆,证明(E+AB)-1A是对称矩阵.
设A,B都是对称矩阵,并且E+AB可逆,证明(E+AB)-1A是对称矩阵.
admin
2019-02-23
72
问题
设A,B都是对称矩阵,并且E+AB可逆,证明(E+AB)
-1
A是对称矩阵.
选项
答案
(E+AB)
-1
A对称,就是[(E+AB)
-1
A]
T
=(E+AB)
-1
A. [(E+AB)
-1
A]
T
=A[(E+AB)
-1
]
T
=A[(E+AB)
T
]
-1
=A(E+BA)
-1
. 于是要证明的是 (E+AB)
-1
A=A(E+BA)
-1
. 对此式作恒等变形: (E+AB)
-1
A=A(E+BA)
-1
[*]A=(E+AB)A(E+BA)
-1
(用E+AB左乘等式两边) [*]A(E+BA)=(E+AB)A(用E+BA右乘等式两边). 等式A(E+BA)=(E+AB)A.显然成立,于是(E+AB)
-1
A=A(E+BA)
-1
成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/1qj4777K
0
考研数学二
相关试题推荐
设f(x)在[a,+∞)上连续,f(a)<0,而存在且大于零.证明:f(x)在(a,-∞)内至少有一个零点.
求
设f(x)在[a,b]上连续且单调减少.证明:当0<k<1时,
设f(x)在[a,b]上连续,且对任意的t∈[0,1]及任意的x1,x2∈[a,b]满足:f(tx1+(1-t)x2)≤tf(x1)+(1-t)f(x2).证明:
设曲线,过原点作切线,求此曲线、切线及x轴所围成的平面图形绕x轴旋转一周所成的旋转体的表面积.
设A为n阶矩阵,若A-1α≠0,而Akα=0.证明:向量组α,Aα,…,Ak-1α线性无关.
设向量组α1=线性相关,但任意两个向量线性无关,求参数t.
已知抛物线y=aχ+bχ+c经过点P(1,2),且在该点与圆相切,有相同的曲率半径和凹凸性,求常数a,b,c.
下列级数中发散的是[].
确定正数a,b,使得
随机试题
甲亢危象的表现是
影像学检查中的“海蛇头”所指的是下列疾病中的
产时腰腹疼痛剧烈,久产不下,下血量少,色暗红,心情烦躁,胸闷脘胀,面色紫暗,舌暗红,脉弦大。其治法
慢粒最突出的体征为
以下行为不构成妨碍公务罪的是()
储蓄国债不可流通转让,但可办理提前兑取、质押贷款、非交易过户等。()
增值税一般纳税人被取消资格需变更登记的,应当提交如下证件( )。
(2012年单选27)根据物权法规定,土地承包经营权的设立时间是()。
设A是秩为3的5×4矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,如果α1+α2+2α3=(2,0,0,0)T,3α1+α2=(2,4,6,8)T,则方程组Ax=b的通解是_________.
Withincreasingprosperity,WesternEuropeanyouthishavingaflingthatiscreatingdistinctiveconsumerandculturalpatterns
最新回复
(
0
)