首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn—r是对应的齐次线性方程组的一个基础解系。证明: (Ⅰ)η*,ξ1,…,ξn—r线性无关; (Ⅱ)η*,η*+ξ1,…,η*+ξn—r线性无关。
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn—r是对应的齐次线性方程组的一个基础解系。证明: (Ⅰ)η*,ξ1,…,ξn—r线性无关; (Ⅱ)η*,η*+ξ1,…,η*+ξn—r线性无关。
admin
2017-12-29
33
问题
η
*
是非齐次线性方程组Ax=b的一个解,ξ
1
,…,ξ
n—r
是对应的齐次线性方程组的一个基础解系。证明:
(Ⅰ)η
*
,ξ
1
,…,ξ
n—r
线性无关;
(Ⅱ)η
*
,η
*
+ξ
1
,…,η
*
+ξ
n—r
线性无关。
选项
答案
(Ⅰ)假设η
*
,ξ
1
,ξ
n—r
线性相关,则存在不全为零的数c
0
,c
1
,…,c
n—r
,使得 c
0
η
*
+c
1
ξ
1
+…+c
n—r
ξ
n—r
=0, (1)用矩阵A左乘上式两边,得 0=A(c
0
η
*
+c
1
ξ
1
+…+c
n—r
ξ
n—r
)= c
0
Aη
*
+c
1
Aξ
1
+…+c
n—r
Aξ
n—r
=c
0
b, 其中b≠0,则c
0
=0,于是(1)式变为 c
1
ξ
1
+…+c…ξ
n—r
=0, ξ
1
,ξ
n—r
是对应的齐次线性方程组的一个基础解系,故ξ
1
,ξ
n—r
线性无关,因此c
1
=c
2
=…=c
n—r
=0,与假设矛盾。 所以η
*
,ξ
1
,ξ
n—r
线性无关。 (Ⅱ)假设η
*
,η
*
+ξ
1
,η
*
+ξ
n—r
线性相关,则存在不全为零的数c
0
,c
1
,…,c
n—r
使 c
0
η
*
+c
1
(η
*
+ξ
1
)+…+c
n—r
(η
*
+ξ
n—r
)=0, 即 (c
0
+c
1
+…+c
n—r
)η
*
+c
1
ξ
1
+…+c
n—r
ξ
n—r
=0。 (2)用矩阵A左乘上式两边,得 0=A[(c
0
+c
1
+…+c
n—r
)η
*
+c
1
ξ
1
+…+c
n—r
ξ
n—r
] =(c
0
+c
1
…+c
n—r
)Aη
*
+c
1
Aξ
1
+…+c
n—r
Aξ
n—r
=(c
0
+c
1
…+c
n—r
)b, 因为b≠0,故c
0
+c
1
+…+c
n—r
=0,代入(2)式,有 c
1
ξ
1
+…+c
n—r
ξ
n—r
=0, ξ
1
,ξ
n—r
是对应的齐次线性方程组的一个基础解系,故ξ
1
,ξ
n—r
线性无关,因此c
1
=c
2
=…=c
n—r
=0,则c
0
=0。与假设矛盾。 综上,向量组η
*
,η
*
+ξ
1
,…,η
*
+ξ
n—r
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/6UX4777K
0
考研数学三
相关试题推荐
设总体X~P(λ)(λ为未知参数),X1,X2,…Xn是来自总体X的简单随机样本,其均值与方差分别为+(2-3a)S2是λ的无偏估计量,常数a应为()
已知A,B是三阶方阵,A≠0,AB=0证明:B不可逆.
设X1,X2,…,Xn独立同分布,X1的取值有四种可能,其概率分布分别为:p1=1一θ,p2=θ一θ2,p3=θ2一θ3,p4=θ3,记Nj为X1,X2,…,Xn中出现各种可能的结果的次数,N1+N2+N3+N4=n。确定a1,a2,a3,a4使
设试证明:P(A)+P(B)一P(C)≤1.
设X与Y为具有二阶矩的随机变量,且设Q(a,b)=E[Y一(a+bX)]2,求a,b使Q(a,b)达到最小值Qmin,并证明:Qmin=DY(1一ρXY2).
设,x∈(0,1],定义A(x)=∫0xf(t)dt,令试证:
设讨论它们在点(0,0)处的①偏导数的存在性;②函数的连续性;③方向导数的存在性;④函数的可微性.
设二次型f(x1,x2,x3)=2(a1x1,a2x2,a3x3)2+(b1x1,b2x2,b3x3)2,记若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22。
设二次型f(x1,x2,x3)=2(a1x1,a2x2,a3x3)2+(b1x1,b2x2,b3x3)2,记证明二次型f对应的矩阵为2ααT+ββT。
已知η是非齐次线性方程组Ax=b的一个特解,ξ1,ξ2,…,ξn-r,是对应齐次方程组Ax=0的基础解系,证明:方程组Ax=b的任一个解均可由η,η+ξ1,η+ξ2,η+ξn-r线性表出.
随机试题
在单侧检验中,给定显著性水平α和P值,可以拒绝原假设的是()。
癃的含义是指:
与急性肾小球肾炎有关的细菌是
某公司2008年因销售产品承诺提供1年的保修服务,在当年度利润表中确认了30000元的销售费用,同时在当年度资产负债表中确认为预计负债,2008年度未发生任何保修支出。税法规定,与产品售后服务相关的费用在实际发生时允许税前扣除。2008年12月31日,该项
×××××××××××××政复[2013]102号××市人民政府办公厅:你市《关于设立阳澄湖生态保护区的请示》(×府呈[2013]105号)收悉。经研究,批复如下:一、同意设立
依据《中华人民共和国行政复议法》和《中华人民共和国行政诉讼法》的有关规定,对于下列决定不服,可以提起行政诉讼的是()。
0,1,1,2,3,(),22。
微分方程y+y=e-xcosx满足条件y(0)=0的解为y=____________。
论信息系统项目的需求管理和范围管理在信息系统项目的开发过程中,人们越来越体会到需求管理和范围管理的重要性,含糊的需求和范围经常性的变化使信息系统项目的甲乙双方吃尽了苦头,这使得人们急于寻找良策以管理范围。请围绕“需求管理和范围管理”论题,分别从以
AccordingtoAmericanlaw,ifsomeoneisaccusedofacrime,heisconsidered【B1】______untilthecourtprovesthepersonisguil
最新回复
(
0
)