A是三阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.

admin2018-04-18  62

问题 A是三阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ12),A(ξ23),A(ξ31)线性无关的充要条件是A是可逆矩阵.

选项

答案A(ξ12),A(ξ23),A(ξ31)线性无关,λ1ξ12ξ2,λ2ξ23ξ3,λ3ξ31ξ1线性无关[*]λ1ξ12ξ2,λ2ξ23ξ3,λ3ξ31ξ1=[ξ1,ξ2,ξ3][*]秩为3,因为ξ1,ξ2,ξ3线性无关,[*]=2λ1λ2λ3≠0,|A|=λ1λ2λ3≠0,A是可逆阵.

解析
转载请注明原文地址:https://kaotiyun.com/show/6Vk4777K
0

最新回复(0)