首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型 f(x1,x2,x3)=xTAx=ax21+2x22-2x23+2bx1x3(b>0), 其中二次型的矩阵A的特征值之和为1,特征值之积为-12. 利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.
设二次型 f(x1,x2,x3)=xTAx=ax21+2x22-2x23+2bx1x3(b>0), 其中二次型的矩阵A的特征值之和为1,特征值之积为-12. 利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.
admin
2021-02-25
109
问题
设二次型
f(x
1
,x
2
,x
3
)=x
T
Ax=ax
2
1
+2x
2
2
-2x
2
3
+2bx
1
x
3
(b>0),
其中二次型的矩阵A的特征值之和为1,特征值之积为-12.
利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.
选项
答案
由矩阵A的特征多项式 [*] 得A的特征值λ
1
=λ
2
=2,λ
3
=-3. 对于λ
1
=λ
2
=2,解齐次线性方程组(2E-A)x=0,得其基础解系 ξ
1
=(2,0,1)
T
,ξ
2
=(0,1,0)
T
. 对于λ
3
=-3,解齐次线性方程组(-3E-A)x=0,得基础解系 ξ
3
=(1,0,-2)
T
. 由于ξ
1
,ξ
2
,ξ
3
已是正交向量组,为得到规范正交向量组,只需将ξ
1
,ξ
2
,ξ
3
单位化,由此得 [*] 令矩阵 [*] 则Q为正交矩阵,在正交变换x=Qy,有 [*] 且二次型的标准形为 f=2y
2
1
+2y
2
2
-3y
2
3
.
解析
转载请注明原文地址:https://kaotiyun.com/show/6e84777K
0
考研数学二
相关试题推荐
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵,其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.计算并化简PQ;
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系。证明:η*,η*+ξ1,…,η*+ξn-r线性无关。
设f(u)(u>0)有连续的二阶导数且z=f(ex2-y2)满足方程=4(x2+y2),求f(u).
设矩阵且|A|=一1,A的伴随矩阵A*有特征值λ0,属于λ0的特征向量为α=[一1,一1,1]T,求a,b,c及λ0的值.
设函数f(x)在(0,+∞)上二阶可导,且f’’(x)>0,记un=f(n),n=1,2,…,又u1<u2,证明
设λ为可逆方阵A的特征值,且χ为对应的特征向量,证明:(1)λ≠0;(2)为A-1的特征值,且χ为对应的特征向量;(3)为A*的特征值,且χ为对应的特征向量.
直线y=x将椭圆x2+3y2=6y分为两块,设小块面积为A,大块面积为B,求的值.
,求A的全部特征值,并证明A可以对角化.
设则其中常数P的取值范围是_________.
设三阶方阵A,B满足A—1BA=6A+BA,且,则B=______。
随机试题
某小学六年级(1)班举行“我心中的祖国”作文竞赛活动,根据班级活动目标和功能划分,这是属于()类型的班级活动。
拒绝社会提供的目标,但仍然遵守社会规范的手段行事,这种偏差行为是()
具有解表和中的功效,用于寒热头痛,食滞阴中,呕吐胀满病症的治疗的非处方药是
综合性应急演练的过程可划分为()三个阶段。
评价一台机器设备质量的优劣主要考核其()以及设备的整齐、清洁、润滑、安全等方面的内容。
以下有关管理幅度的论述正确的是()。
基于信息技术的协同采购是指电子化协同采购。()
某资本家投资100万元,每次投资所得的利润是15万元,假定其预付资本的有机构成是4:1,那么该资本家每次投资所实现的剩余价值率为()(2013年单选)
Joyandsadnessareexperiencedbypeopleinallculturesaroundtheworld,buthowcanwetellwhenotherpeoplearehappyord
下列操作中正确的是______。
最新回复
(
0
)