首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是( )
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是( )
admin
2021-01-25
156
问题
设λ
1
,λ
2
是矩阵A的两个不同的特征值,对应的特征向量分别为α
1
,α
2
,则α
1
,A(α
1
+α
2
)线性无关的充分必要条件是( )
选项
A、λ
1
=0。
B、λ
2
=0。
C、λ
1
≠0。
D、λ
2
≠0。
答案
D
解析
方法一:令k
1
α
1
+k
2
A(α
1
+α
2
)=0,则(K
1
+k
2
λ
1
)α
1
+k
2
λ
2
α
2
=0。
由于α
1
,α
2
线性无关,于是有
.
当λ
2
≠0时,显然有k
1
=0,k
2
=0,此时α
1
,A(α
1
+α
2
)线性无关;反过来,若α
1
,A(α
1
+α
2
)线性无关,则必然有λ
2
≠0(否则,α
1
与A(α
1
+α
2
)=λ
1
α
1
线性相关)。故应选D。
方法二:由于[α
1
,A(α
1
+α
2
)]=(α
1
,λ
1
α
1
+λ
2
α
2
)=(α
1
,α
2
)
,可见α
1
,A(α
1
+α
2
)线性无关的充要条件是
=λ
2
≠0。
故应选D。
转载请注明原文地址:https://kaotiyun.com/show/6fx4777K
0
考研数学三
相关试题推荐
非齐次线性方程组AX=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则().
某保险公司对多年来的统计资料表明,在索赔户中被盗索赔户占20%,以X表示在随意抽查的100个索赔户中因被盗向保险公司索赔的户数.[附表]设Φ(x)是标准正态分布函数.写出X的概率分布;
一枚均匀硬币重复掷3次,以X表示正面出现的次数,以Y表示前两次掷出正面的次数,试求随机变量X和Y的联合概率分布.
某地抽样调查结果表明,考生的外语成绩(百分制)近似正态分布,平均成绩为72分、96分以上的占考生总数的2.3%,求考生的外语成绩在60分至84分之间的概率.表中,Φ(x)是标准正态分布函数.
设随机变量X在区间(0,1)上服从均匀分布,在X=x(0<x<1)的条件下,随机变量Y在区间(0,x)上服从均匀分布.求:概率P(X+Y>1).
求线性方程组的通解,并求满足条件的所有解.
设f(x)在[a,b]上连续可导,且f(a)=f(b)=0.证明:|f(x)|≤∫ab|f’(x)|dx(a<x<b).
设三阶实对称矩阵A的特征值是1,2,3,矩阵A的属于特征值1,2的特征向量分别为α1=[-1,-1,1]T,α2=[1,-2,-1]T.求矩阵A.
(99年)设矩阵A=且|A|=-1,又设A的伴随矩阵A*有特征值λ0,属于λ0的特征向量为α=(-1,-1,1)T.求a,b,c及λ0的值.
(1992年)级数的收敛域为______.
随机试题
会导致爆炸性气体的爆炸极限范围变大的条件是()。
为了防止已存有信息的计算机软盘感染病毒,应该()。
简述考试焦虑的危害及矫正方法。
低渗性缺水亦称
青少年牙周炎牙齿移位方向是
患者女,40岁。得知身边最好的朋友患了肝炎后,一年来总觉得自己的肝区疼痛、恶心、食欲减退,去多家医院重复检查肝功能指标均为正常,经B超、腹部CT检查也无异常,但患者总觉得不适而苦恼,怀疑患了严重的疾病。该患者的诊断是
对提高职业道德修养有价值的方式是()。
学校教育需要按照特定的()来最有效地组织教学。
AllU.S.nuclearweaponsproductionfacilitiesarepresentlycloseddown,andifthevariousagreementsareadheredto,thosefa
J.Martin指出,设计一个大系统必须有最高层的______为指导,以避免各子系统间的______。
最新回复
(
0
)