首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
非齐次线性方程组AX=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则( ).
非齐次线性方程组AX=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则( ).
admin
2019-05-08
53
问题
非齐次线性方程组AX=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则( ).
选项
A、r=m时,方程组AX=b有解
B、r=n时,方程组AX=b有唯一解
C、m=n时,方程组AX=b有唯一解
D、r<n时,方程组AX=b有无穷多解
答案
A
解析
解一 因A为m×n矩阵,若秩(A)=m,则m=秩(A)≤秩([A|b])≤m,于是秩(A)-秩([A|b])=m,故方程组AX=b当秩(A)=m时必有解.仅(A)入选.
解二 由秩(A)=m知,A的行向量组线性无关,其延伸向量组必线性无关,故增广矩阵[A|b]的m个行向量也线性无关,故秩(A)=秩([A|b])=秩(A)=m,所以仅(A)入选.
解三 因选项(B)、(C)、(D)中均不能保证秩(A)=秩([A|b]),因而都不能保证方程组有解,更谈不上是唯一解或无穷多解.
上例选项(A)中的结论可写成如下命题的形式,可直接使用.
转载请注明原文地址:https://kaotiyun.com/show/esJ4777K
0
考研数学三
相关试题推荐
设f(x)在[0,1]上二阶连续可导且f(0)=f(1),又|f’’(x)|≤M,证明:|f’(x)|≤.
设总体X的概率密度为其中参数θ(0<θ<1)未知。X1,X2,…,Xn是来自总体X的简单随机样本,是样本均值。求参数θ的矩估计量。
已知随机变量X的概率密度(Ⅰ)求分布函数F(x)。(Ⅱ)若令Y=F(x),求Y的分布函数FY(y)。
假设二维随机变量(X1,X2)的协方差矩阵为∑=,其中σij=Cov(Xi,Xj)(i,j=1,2),如果X1与X2的相关系数为p,那么行列式|∑|=0的充分必要条件是()
设f(x)在[a,b]上连续,且f’’(x)>0,对任意的x1,x2∈[a,b]及0<λ<1,证明:f[λx1+(1-λ)x2]≤λf(x1)+(1-λ)f(x2).
求幂级数的和函数.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0.(1)证明:α1,α2,…,αn线性无关;(2)求A的特征值与特征向量.
设P为可逆矩阵,A=PTP.证明:A是正定矩阵.
设函数y=y(x)由e2x+y—cosxy=e一1确定,则曲线y=y(x)在x=0处的法线方程为___________.
设X1,X2,…,Xn为总体X的一个样本,已知EX=μ,DX=σ2<+∞,求和E(S2).
随机试题
知觉的理解性是指()。
下列句子有无歧义?如果有,请分析歧义产生的原因。大家都学了一个月了。
阅读《爱尔克的灯光》中的一段文字,然后回答问题。然而人的安排终于被“偶然”破坏了。这应该是一个“意外”。但是这“意外”却毫无怜悯地打击了年轻的心。我离家不过一年半光景,就接到了姐姐的死讯。……对于姐姐,她生前我没有好好地爱过她,死后也不曾做过一样
适合砌筑处于潮湿环境下的砌体的沙浆是()。
某生物制药厂的一项机电安装工程,由该市某机电工程安装公司负责,主要工程包括防雷和接地装置的安装。根据制药厂的要求,每座实验楼需安装避雷网,办公楼顶端需安装避雷针;根据接地系统的要求,需进行照明以及电子设备的接地工程。工程于2008年7月10日施行,由于各项
发票的全部联次应一次性复写或打印,内容完全一致。()
某公司成立于2013年1月1日,2013年度实现的净利润为1000万元,分配现金股利550万元,提取盈余公积450万元(所提盈余公积均已指定用途)。2014年实现的净利润为900万元(不考虑计提法定盈余公积的因素)。2015年计划增加投资,所需资金为700
甲县烟草专卖局发现葛某销售某品牌外国香烟,执法人员表明了自己的身份,并制作了现场笔录。因葛某拒绝签名,随行电视台记者范某作为见证人在笔录上签名,该局当场制作行政处罚决定书,没收15条外国香烟。葛某不服该决定,提起行政诉讼。诉讼中,县烟草专卖局向法院提交了现
某人投资某债券,买入价格为100元,一年后卖出价格为110元,期间获得利息收入10元,则该投资的持有期收益率为()。
下列各句中,没有语病的一句是()。
最新回复
(
0
)