首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且,又f(2)=,证明:存在ξ∈(0,2),使得f’(ξ)+f’’(ξ)=0.
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且,又f(2)=,证明:存在ξ∈(0,2),使得f’(ξ)+f’’(ξ)=0.
admin
2018-05-22
29
问题
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且
,又f(2)=
,证明:存在ξ∈(0,2),使得f’(ξ)+f’’(ξ)=0.
选项
答案
由[*]得f(1)=-1, 又[*],所以f’(1)=0. 由积分中值定理得f(2)=[*]f(x)dx=f(c),其中c∈[*] 由罗尔定理,存在x
0
∈(c,2)[*](1,2),使得f’(x
0
)=0. 令φ(x)=e
x
f’(x),则φ(1)=φ(x
0
)=0, 由罗尔定理,存在ξ∈(1,x
0
)[*](0,2),使得φ’(ξ)=0, 而φ’(x)=e
x
[f’(x)+f’’(x)]且e
x
≠0,所以f’(ξ)+f’’(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/6vk4777K
0
考研数学二
相关试题推荐
(2002年试题,十一)已知A,B为三阶矩阵,且满足2A-1B=B-4E,其中E是三阶单位矩阵.(1)证明:矩阵A-2E可逆;(2)若求矩阵A.
(1998年试题,二)设函数f(x)在x=a的某个领域内连续,且f(x)为其极大值,则存在δ>0,当x∈(a一δ,a+δ)时,必有().
(2003年试题,二)设函数f(x)在(一∞,+∞)内连续,其导函数的图形如右图1—2—3所示,则f(x)有().
(1)证明拉格朗日拉值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b-a).(2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f’+(0)存在,且f’+
已知A,B为3阶矩阵,且满足2A-1B=B一4E,其中E是3阶单位矩阵.(1)证明:矩阵A-2E可逆;(2)若,求矩阵A.
求不定积分∫(arcsinx)2dx.
设f(x)和φ(x)在(-∞,+∞)上有定义,f(x)为连续函数,且,(φ)≠0,f(x)有间断点,则
当x→1时,无穷小~A(x+1)k,则A=_____,k=______.
设n阶矩阵A,B等价,则下列说法中,不一定成立的是()
证明:不等式1+xln(x+一∞<x<+∞.
随机试题
18世纪欧洲文学最令人瞩目的成就是
认清中国的国情,最重要的是认清()
衔接
在1—1剖面图上看到的门、窗(含天窗)、洞口的数量各为几个?
在Windows中,拖动鼠标执行复制操作时,鼠标光标的箭头尾部( )。
在Windows中,拖动鼠标执行复制操作时,鼠标光标的箭头尾部()。
会计恒等式中,当资产增加、负债减少时,所有者权益的变动是( )。
个人兼职所得的收入应按照个人所得税的()税目缴纳所得税。
【B1】【B14】
CreativeartistsandthinkersachievecommunicationbyAccordingtothepassage,whichofthefollowingstatementsisINCORRECT
最新回复
(
0
)