首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1+λ,1,1),α2=(1,1+λ,1),α3=(1,1,1+λ),若β=(0,λ,λ2)可以由α1,α2,α3线性表示且表示法是唯一的,则λ应满足的条件是_______.
设α1=(1+λ,1,1),α2=(1,1+λ,1),α3=(1,1,1+λ),若β=(0,λ,λ2)可以由α1,α2,α3线性表示且表示法是唯一的,则λ应满足的条件是_______.
admin
2017-05-18
35
问题
设α
1
=(1+λ,1,1),α
2
=(1,1+λ,1),α
3
=(1,1,1+λ),若β=(0,λ,λ
2
)可以由α
1
,α
2
,α
3
线性表示且表示法是唯一的,则λ应满足的条件是_______.
选项
答案
λ≠0且λ≠-3
解析
设β=x
1
α
1
+x
2
α
2
+x
3
α
3
,则
将其增广矩阵进行行初等变换:
则λ≠0,否则方程组有无穷多解;λ≠-3,否则方程组无解.
转载请注明原文地址:https://kaotiyun.com/show/6vu4777K
0
考研数学一
相关试题推荐
设f(x,y)与φ(x,y)均为可微函数,且φˊy(x,y)≠0,已知(xo,yo)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是().
设二二次型f(x1,x2,x3)=XTAX=ax12+2x22+(﹣2x32)+2bx1x3(b>0),其中二次矩阵A的特征值之和为1,特征值之积为﹣(I)求a,b的值;(II)利用正交变换将二次型f化为标准形,并写出所用的正交变换对应的
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(层为n阶单位矩阵).
设A,B皆为n阶矩阵,则下列结论正确的是().
若二阶常系数线性齐次微分方程y"+ay’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y"+ay’+by=x满足条件y(0)=2,y’(0)=0的解为y=___________.
当k=________时,向量β=(1,k,5)能由向量α1=(1,-3,2),α2=(2,-1,1)线性表示.
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设A,B为三阶相似矩阵,且|2B+A|=0,λ1=1,λ2=一1为B的两个特征值,则行列式|A+2AB|=________。
设A为n×m实矩阵,且秩r(A)=n,考虑以下命题:①AAT的行列式|AAT|≠0;②AAT必与n阶单位矩阵等价;③AAT必与一个对角矩阵相似;④AAT必与n阶单位矩阵合同,其中正确的命题数为
随机试题
ACEI的副作用包括
前列腺炎的主要临床表现是()
男,30岁,病程4个月,头痛发病,入院前出现左侧肢体无力和呕吐,入院检查,意识清,眼底视盘水肿,左上下肢肌力Ⅳ级,腱反射活跃,病理征(+)。应采用的检查是
下列关于企业开具和使用发票的说法中,正确的是()。
承租人甲公司于2×21年1月1日签订了一份为期5年的机器租赁合同,用于生产A产品。租金于每年年末支付,并按以下方式确定:第1年,租金是可变的,根据该机器在第1年下半年的实际产能确定;第2年至第5年,每年的租金根据该机器在第1年下半年的实际产能确定,即租金将
试论述相对评价法、绝对评价法、个体内差异评价法的区别。
若按每件8元利润售出某种商品5件的毛收入与按每件5元利润售出该种商品6件的毛收入相同,问该商品每件的成本价是多少?
阅读下列说明,回答问题1至问题3,将解答填入答题纸的对应栏内。[说明]某行业协会组织开发了一套信息系统,准备完成系统终验后即在地方协会部署,为保证部署效果,招入第三方监理机构和测试机构对系统最终验收工作提供咨询和服务。[事件1]协会要求第三方测试机构
EngineeringforsustainabledevelopmentTheGreenhouseProject(Himalayanmountainregion)ProblemShortgrowingseason
Recently,apossiblealternativewayofproducingpaperhasbeensuggestedbyagriculturalistsandenvironmentalists:aplantca
最新回复
(
0
)