首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A,B为三阶非零矩阵,且。β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。 求a,b的值;
已知A,B为三阶非零矩阵,且。β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。 求a,b的值;
admin
2019-04-22
144
问题
已知A,B为三阶非零矩阵,且
。β
1
=(0,1,一1)
T
,β
2
=(a,2,1)
T
,β
3
=(b,1,0)
T
是齐次线性方程组Bx=0的三个解向量,且Ax=β
3
有解。
求a,b的值;
选项
答案
由B≠O,且β
1
,β
2
,β
3
是齐次线性方程组Bx=0的三个解向量可知,向量组β
1
,β
2
,β
3
必线性相关,于是 |β
1
,β
2
,β
3
|=[*]=0, 解得a=3b。 由Ax=β
3
有解可知,线性方程组Ax=β
3
的系数矩阵的秩等于增广矩阵的秩,对增广矩阵作初等行变换得 (A,β
3
)=[*] 所以b=5,a=3b=15。
解析
转载请注明原文地址:https://kaotiyun.com/show/6xV4777K
0
考研数学二
相关试题推荐
设常数α≤α<β≤b,曲线Γ:y=(χ∈[α,β])的孤长为l.(Ⅰ)求证:l=;(Ⅱ)求定积分J=.
设有参数方程0≤t≤π.(Ⅰ)求证该参数方程确定y=y(χ),并求定义域;(Ⅱ)讨论y=y(χ)的可导性与单调性;(Ⅲ)讨论y=y(χ)的凹凸性.
已知齐次线性方程组(I)的基础解系为ξ1=[1,0,1,1]T,ξ2=[2,1,0,一1]T,ξ3=[0,2,1,一1]T,添加两个方程后组成齐次线性方程组(Ⅱ),求(Ⅱ)的基础解系.
其余各行都减去第一行,得:[*]
①设α1,α2,…,αs和β1,β2,…βt都是n维向量组,证明r(α1,α2,…,αs,β1,β2,…,βt)≤r(α1,α2,…,αs)+r(β1,β2,…,βt).②设A和B是两个行数相同的矩阵,r(A|B)≤r(A)+r(B).③设A和B是两个
设随机变量(X,Y)的概率密度为f(x,y)=,求(1)系数k;(2)边缘概率密度;(3)X和Y是否独立.
设实对称矩阵A满足A2—3A+2E=0,证明:A为正定矩阵.
设α1,α2……αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,其中t1,t2为实常数.试问t1,t2满足什么关系时,β1β2……βs也为Ax=0的一个基础解系.
设f(x)=|(x一1)(x一2)2(x一3)3|,则导数f’(x)不存在的点的个数是()
设f(x)在[a,b]连续,且∈[a,b],总∈[a,b],使得|f(y)|≤|f(x)|.试证:∈[a,b],使得f(ξ)=0.
随机试题
对于文件的扩展名,不正确的描述为()
A.表面活性剂B.栓剂C.水溶性粉体D.聚乙烯醇E.注射用油与临界相对湿度有关的是
骨盆界线的组成是
2019年7月6日,中国银保监会向各大银行、保险公司下发《中国银保监会办公厅关于推动供应链金融服务实体经济的指导意见》,意见要求,银行保险机构应依托(),基于()之间的真实交易,整合物流、信息流、资金流等各类信息,提供融资、结算、现金管理等
去年的通货膨胀率是1.2%,今年到目前为止已经达到4%。因此我们可以得出结论:通货膨胀率呈上升趋势,明年的通货膨胀率会更高。以下哪个选项如果为真,最能削弱上述结论?()
给定资料1.中国人讲究礼尚往来,逢年过节来往走动,互赠礼物,互祝安康,也是美好情谊的表达。特别是在结婚这样的喜事上更是讲究礼尚往来。操办婚礼无可厚非,但是动辄十几万甚至几十万的彩礼、几百几千的份子钱,亲朋好友连吃多天的婚宴酒席等大操大办、铺张浪费的不良风
的根的个数为().
(Itis)extremelyimportant(for)anengineer(toknow)(touseacomputer).
Themostastonishingfactin"Crumb,"TerryZwigoff’s1994documentaryabouttheundergroundcomicbookartistRobertCrumb,was
A、Theinternationalinsurance.B、Thestudenthealthinsurance.C、Lifeinsurance.D、Accidentinsurance.B对话中,当男士谈到第二种选择(studenth
最新回复
(
0
)