首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设(Ⅰ)和(Ⅱ)都是4元齐次线性方程组,已知ξ1=(1,0,1,1)T,ξ2=(-1,0,1,0)T,ξ3=(0,1,1,0)T是(Ⅰ)的一个基础解系,η1=(0,1,0,1)T,η2=(1,1,-1,0)T是(Ⅱ)的一个基础解系.求(Ⅰ)和(Ⅱ)公共解.
设(Ⅰ)和(Ⅱ)都是4元齐次线性方程组,已知ξ1=(1,0,1,1)T,ξ2=(-1,0,1,0)T,ξ3=(0,1,1,0)T是(Ⅰ)的一个基础解系,η1=(0,1,0,1)T,η2=(1,1,-1,0)T是(Ⅱ)的一个基础解系.求(Ⅰ)和(Ⅱ)公共解.
admin
2017-07-10
64
问题
设(Ⅰ)和(Ⅱ)都是4元齐次线性方程组,已知ξ
1
=(1,0,1,1)
T
,ξ
2
=(-1,0,1,0)
T
,ξ
3
=(0,1,1,0)
T
是(Ⅰ)的一个基础解系,η
1
=(0,1,0,1)
T
,η
2
=(1,1,-1,0)
T
是(Ⅱ)的一个基础解系.求(Ⅰ)和(Ⅱ)公共解.
选项
答案
用例4.24的第二种思路解.现在(Ⅰ)也没有给出方程组,因此不能用例4.24的代入的方法来决定c
1
,c
2
应该满足的条件了.但是(Ⅰ)有一个基础解系ξ
1
,ξ
2
,ξ
3
,c
1
η
1
+c
2
η
2
满足(Ⅰ)的充分必要条件为c
1
η
1
+c
2
η
2
能用ξ
1
,ξ
2
,ξ
3
线性表示,即r(ξ
1
,ξ
2
,ξ
3
,c
1
η
1
+c
2
η
2
)=r(ξ
1
,ξ
2
,ξ
3
).于是可以通过计算秩来决定c
1
,c
2
应该满足的条件: [*] 于是当3c
1
+c
2
=0时c
1
η
1
+c
2
η
2
也是(Ⅰ)的解.从而(Ⅰ)和(Ⅱ)的公共解为: c(η
1
-3η
2
),其中c可取任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/DYt4777K
0
考研数学二
相关试题推荐
[*]
设A,B为同阶可逆矩阵,则().
设(X,Y)~N(μ1,μ2;δ12,δ22;ρ),利用条件期望E[X|Y]=μ1+(δ1/δ2)ρ(Y-μ2),证明ρX,Y=ρ.
求下列各函数的导数(其中,a,n为常数):
用拉格朗日定理证明:若,且当x>0时,fˊ(x)>0,则当x>0时,f(x)>0.
讨论下列函数在x=0处的导数,并作几何解释.(1)f(x)=|sinx|;(2)f(x)=x1/3;(3)f(x)=x2/3.
证明函数y=sinx-x单调减少.
求极限
二元函数f(x,y)在点(x0,y0)处两个偏导数f’(x0,y0),fx’(x0,y0)存在是f(x,Y)在该点连续的
随机试题
电控泵-喷嘴系统,控制流过高速电磁阀线圈电流_______时刻及_______,就可控制喷油提前角与_______。
枕左前位分娩时,进行胎头内旋转动作是在
汗证的病理总属
用米炮制的药物是()。
证券公司申请介绍业务资格,流动资产余额不低于流动负债余额(不包括客户交易结算资金和客户委托管理资金)的150%。( )
根据我国《上市公司发行可转换公司债券实施办法》的规定,可转债具体转股期限应由发行人根据()确定。I.持有人要求Ⅱ.公司财务情况Ⅲ.流通股价格Ⅳ.可转债的存续期
课外、校外活动的组织形式主要包括()
社会主义社会实行按劳分配的直接原因是社会成员中存在着不同的阶级和阶层。()
(98年)设z=f(xy)+yφ(x+y),f,φ具有二阶连续导数,则
使用VC++2010打开考生文件夹下blank1中的解决方案。此解决方案的项目中包含一个源程序文件blank1.c。此程序的描述是围绕山顶一圈有N个山洞,编号为0、1、2、3、…、N-1,有一只狐狸和一只兔子在洞中居住。狐狸总想找到兔子并吃掉它,它的寻找方
最新回复
(
0
)