首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设非零n维列向量α,β正交且A=αβT.证明:A不可以相似对角化.
设非零n维列向量α,β正交且A=αβT.证明:A不可以相似对角化.
admin
2018-04-15
39
问题
设非零n维列向量α,β正交且A=αβ
T
.证明:A不可以相似对角化.
选项
答案
令λ为矩阵A的特征值,X为λ所对应的特征向量,则AX=λX,显然A
2
X=λ
2
X,因为α,β正交,所以A
2
=αβ
T
·αβ
T
=O,于是λ
2
X=0,而X≠0,故矩阵A的特征值为λ
1
=λ
2
=…=λ
n
=0. 又由α,β都是非零向量得A≠O, 因为r(0E—A)=r(A)≥1,所以n一r(OE—A)≤n一1
解析
转载请注明原文地址:https://kaotiyun.com/show/70X4777K
0
考研数学三
相关试题推荐
设α1,α2,α3,α4,β为四维列向量组,A=(α1,α2,α3,α4),已知方程组Ax=β的通解是(-1,1,0,2)T+k(1,-1,2,0)T.求α1,α2,α3,α4,β的一个极大线性无关组.
设A是n阶矩阵,A的第i行第j列元素aij=i.j(i,j=1,2,…,n).B是n阶矩阵,B的第i行第j列元素bij=i2(i=1,2,…,n).证明:A相似于B.Cov(X,Y).
设A是n阶矩阵,A的第i行第j列元素aij=i.j(i,j=1,2,…,n).B是n阶矩阵,B的第i行第j列元素bij=i2(i=1,2,…,n).证明:A相似于B.(X,Y)的概率分布,
求由方程2x2+2y2+z2+8xz一z+8=0所确定的函数z(x,y)的极值,并指出是极大值还是极小值.证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示;
(Ⅰ)设0<x<+∞,证明存在η,0<η<1,使;(Ⅱ)求η关于x的函数关系的具体表达式η=η(x),并求出当0<x<+∞时函数η(x)的值域.可逆线性变换X=Cz(其中z=(z1,z2,z3)T),C是三阶可逆矩阵),它将f(x1
设A,B均为n阶非零矩阵,且A2+A=0,B2+B=0,证明若AB=BA=0,ξ1,ξ2分别是A,B属于特征值λ=-1的特征向量,则ξ1,ξ2线性无关.
(Ⅰ)求方程组(*)的基础解系和通解;(Ⅱ)问参数a,b,c满足什么条件时,方程组(*)和(**)是同解方程组.(X,Y)的分布函数;
由方程sin(xy)-=1所确定的曲线y=y(x)在x=0处的切线方程为________.
曲线y=e-xsinx(0≤x≤3π)与x轴所围成图形的面积可表示为()
随机试题
A.肝阳化风证B.血虚生风证C.阴虚生风证D.热极生风证眩晕震颤,肌肉瞤动者,此属
A.下颌骨体有大小不等的多房阴影B.下颌骨内有单房透明阴影,四周有白色骨质线C.颌骨内虫蚀状骨质破坏区,四周骨质可有破坏D.下颌角见骨质疏松脱钙,并有骨质增生E.下颌骨体有骨质破坏,并有死骨形成成釉细胞瘤X线表现是
对外援助物资的特殊规定有:( )
在我国,国债利率主要以()为基准。(2010年单选题)
年资本回收额是年金终值的逆运算。()
比较两个英文字符串的大小的方法是()。
“将多兵众,不可以敌,使其自累,以杀其势。在师中吉,承天宠也。”这句话出自三十六计的()。
气候变暖或许是全球性的,但它带给全球居民的苦难程度是不同的。最显而易见、也最令人担忧的莫过于它将对农业产生的影响。科学家通过新近的几项分析得出结论认为,未来若干年气温上升将严重影响地球上纬度较低、也是世界上大多数穷人所居住地区的农业。印
2011年底,全国拥有水上运输船舶17.92万艘,比上年末增长0.5%;净载重量21264.32万吨,增长17.9%;平均净载重量增长17.3%;集装箱箱位147.52万TEU,增长11.4%;船舶功率5949.66万千瓦,增长11.6%。据以上资料
GlobalLanguageI.WHAT?Learnedandspokeninternationally【T1】______:【T1】______-thenumberofnativeandsecondlang
最新回复
(
0
)