首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,+∞)上二阶可导,f(0)=0,f’’(x)<0,当0<a<x<b时,有( )
设f(x)在[0,+∞)上二阶可导,f(0)=0,f’’(x)<0,当0<a<x<b时,有( )
admin
2022-06-09
45
问题
设f(x)在[0,+∞)上二阶可导,f(0)=0,f’’(x)<0,当0<a<x<b时,有( )
选项
A、af(x)>xf(a)
B、bf(x)>xf(b)
C、xf(x)>bf(b)
D、xf(x)>af(a)
答案
B
解析
令F(x)=f(x)(x>0),则
F’(x)=xf’(x)-f(x)/x
2
=xf’(x)-[f(x)-f(0)]/x
2
=xf’(x)-xf’(ξ)/x
2
=f’(x)-f’(ξ)/x
其中0<ξ<x<b
由f’’(x)<0,知f’(x)单调减少,故F’(x)<0,从而F(x)单调减少,于是有f(x)/x>f(b)/b,即bf(x)>xf(b),故B正确
转载请注明原文地址:https://kaotiyun.com/show/79f4777K
0
考研数学二
相关试题推荐
设有方程组AX=0与BX=0,其中A,B都是m×n阶矩阵,下列四个命题:(1)若AX=0的解都是BX=0的解,则r(A)≥r(B)(2)若r(A)≥r(B),则AX=0的解都是BX=0的解(3)若AX=0与BX=0同解,则r(A)=r(B
设α1=(1,2,3,1)T,α2=(3,4,7,一1)T,α3=(2,6,a,6)T,α4=(0,l,3,a)T,那么a=8是α1,α2,α3,α4线性相关的()
已知向量组(I)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,如果各向量组的秩分别为r(I)=r(Ⅱ)=3,r(Ⅲ)=4,则向量组α1,α2,α3,α5
α1,α2,α3,β线性无关,而α1,α2,α3,γ线性相关,则
向量组α1=(1,3,5,一1)T,α2=(2,一1,一3,4)T,α3=(6,4,4,6)T,α4=(7,7,9,1)T,α5=(3,2,2,3)T的极大线性无关组是()
已知3阶矩阵A有特征值λ1=1,λ2=2,λ3=3,则2A*的特征值是()
设A是m×n矩阵,AT是A的转置,若η1,η2,…,ηt为方程组ATx=0的基础解系,则r(A)=()
A=,则()中矩阵在实数域上与A合同.
已知α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,那么下列向量α1一α2,α1+α2一2α3,,α1一3α2+2α3中能导出方程组Ax=0解的向量共有()
设偶函数f(χ)有连续的二阶导数,并且f〞(0)≠0,则χ=0().
随机试题
某商业建筑,东西长100m,南北宽60m,建筑高度26m,室外消火栓设计流量为40L/s,南侧布置消防扑救面。沿该建筑南侧消防扑救面设置的室外消火栓数量,不宜少于()个。
患者因受精神刺激突发二便失禁,骨酸痿厥或遗精。其病机是患者因受精神刺激而气逆喘息,面红口赤,呕血,昏厥卒倒。其病机是
下列有抗原性的纤维蛋白溶解药是
外加剂储存时应当至少离地的高度和离墙的距离分别是()。
下列各项中,可能与“应付职工薪酬”科目贷方对应的有()。
沂源:苹果:水果
某种商品有小箱和大箱两种包装,一大箱这种商品有400件,张和王同时开始制造这种商品,制造一小箱和一大箱这种商品后,张比王多做50件。如果王此时的效率提高100%,并与张再共同制造一大箱这种商品,则王制造的总件数比张多50件。问一小箱这种商品有多少件:
下列成语及其出处的对应关系错误的是()。
Manhasbeenstoringupusefulknowledgeabouthimselfandtheuniverseattheratewhichhasbeenspiralingupwardfor10,000y
【B1】【B8】
最新回复
(
0
)