首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,+∞)上二阶可导,f(0)=0,f’’(x)<0,当0<a<x<b时,有( )
设f(x)在[0,+∞)上二阶可导,f(0)=0,f’’(x)<0,当0<a<x<b时,有( )
admin
2022-06-09
70
问题
设f(x)在[0,+∞)上二阶可导,f(0)=0,f’’(x)<0,当0<a<x<b时,有( )
选项
A、af(x)>xf(a)
B、bf(x)>xf(b)
C、xf(x)>bf(b)
D、xf(x)>af(a)
答案
B
解析
令F(x)=f(x)(x>0),则
F’(x)=xf’(x)-f(x)/x
2
=xf’(x)-[f(x)-f(0)]/x
2
=xf’(x)-xf’(ξ)/x
2
=f’(x)-f’(ξ)/x
其中0<ξ<x<b
由f’’(x)<0,知f’(x)单调减少,故F’(x)<0,从而F(x)单调减少,于是有f(x)/x>f(b)/b,即bf(x)>xf(b),故B正确
转载请注明原文地址:https://kaotiyun.com/show/79f4777K
0
考研数学二
相关试题推荐
设,则当x→0时,两个无穷小的关系是()。
向量组α1=(1,3,5,一1)T,α2=(2,一1,一3,4)T,α3=(6,4,4,6)T,α4=(7,7,9,1)T,α5=(3,2,2,3)T的极大线性无关组是()
已知3阶矩阵A有特征值λ1=1,λ2=2,λ3=3,则2A*的特征值是()
设Φ1(x),Φ2(x),Φ3(x)为二阶非齐次线性方程y"+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为()。
已知α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,那么下列向量α1一α2,α1+α2一2α3,,α1一3α2+2α3中能导出方程组Ax=0解的向量共有()
设函数f(x)在(一∞,+∞)存在二阶导数,且f(x)=f(一x),当x<0时有f’(x)<0,f’’(x)>0,则当x>0时,有()
设f(x),g(x)是连续函数,当x→0时,f(x)与g(x)是等价无穷小,令F(x)=G(x)=,则当x→0时,F(x)是G(x)的().
设函数μ(x,y)=φ(x+y)+φ(x一y)+∫x-yx+yψ(t)dt,其中函数φ具有二阶导数,ψ具有一阶导数,则必有()
设f(x)=f(一x),且在(0,+∞)内二阶可导,又f’(x)>0,f"(x)<0,则f(x)在(一∞,0)内的单调性和图形的凹凸性是()
设y=y(x)是二阶线性常系数微分方程y’’+Py’+qy=e3x满足初始条件y(0)=y’(0)=0的特解,则当x→0时,函数的极限()
随机试题
双侧游离端缺失属于Kennedy分类的
超声检查在口腔颌面部不适用于
人体实验应遵循的伦理原则包括,除外A.知情同意的原则B.维护受试者利益的原则C.科学的原则D.医学发展和人类健康利益第一的原则E.有利于维护和促进人类健康的原则
在一起行政诉讼案件中,被告进行处罚的依据是国务院某部制定的一个行政规章,原告认为该规章违反了有关法律。根据我国宪法规定,下列哪一机关有权改变或者撤销不适当的规章?
容量为100MW的机组,采用发电机一三绕组变压器单元接线时宜符合下列何项的要求?
通常情况下,合同双方通过设定(),来克服成本加酬金合同的缺点。
以公司的内部管辖关系为标准,可以将公司分为母公司和子公司。()
根据利率平价学说,利率相对较高的国家未来货币升水的可能性大。
设n阶方阵A的各行元素之和均为零,且RA=n—1,则线性方程组Ax=0的通解为__________。
以下选项中,不能对主函数中变量i和j的值进行交换的程序是()。
最新回复
(
0
)