首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数y=f(x)具有二阶导数,且f’(x)>0,f"(x)>0,△x为自变量x在x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则
设函数y=f(x)具有二阶导数,且f’(x)>0,f"(x)>0,△x为自变量x在x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则
admin
2015-09-10
57
问题
设函数y=f(x)具有二阶导数,且f’(x)>0,f"(x)>0,△x为自变量x在x
0
处的增量,△y与dy分别为f(x)在点x
0
处对应的增量与微分,若△x>0,则
选项
A、0<dy<△y.
B、0<△y<dy.
C、△y<dy<0.
D、dy<△y<0.
答案
A
解析
直接法:dy=f’(x
0
)△x, △y=f(x
0
+△x)一f(x
0
)=f’(ξ)△x,x
0
<ξ<x
0
+△x
由于f"(x)>0,则f’(x)单调增,从而有f’(x
0
)<f’(ξ),故dy<△y
由于f’(x)>0,△x>0,则0<dy<△y,故应选(A).
转载请注明原文地址:https://kaotiyun.com/show/7Gw4777K
0
考研数学一
相关试题推荐
设矩阵,矩阵B=(kE+A)2,求对角矩阵A,使得B和A相似,并问k为何值时,B为正定矩阵.
求A=的特征值和特征向量.
设,求n,c的值.
设曲线(0<a<4)与x轴、y轴所围成的图形绕z轴旋转所得立体体积为V1(a),绕y轴旋转所得立体体积为V2(a),问a为何值时,V1(a)+V2(a)最大,并求最大值.
A是三阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵).求:(1)二次型XTAX的标准形;(2)|E+A+A2+…+An|的值.
设函数f(x)满足xf’(x)-2f(x)=-x,且由曲线y=f(x),x=1及x轴(x≥0)所围成的平面图形为D,若D绕x轴旋转一周所得旋转体体积最小,求:曲线y=f(x).
(Ⅰ)设f(x),g(x)在点x=x0处可导且f(x0)=g(x0)=0,f′(x0)g′(x0)<0,求证:x=x0是f(x)g(x)的极大值点.(Ⅱ)求函数F(x)=(x∈(—∞,+∞))的值域区间
求幂级数的收敛域.
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
随机试题
CT扫描发现左心后区类圆形“肿块”影,内含少量气体,与横膈关系密切。下述疾病中可能性最大的是
A.酸败B.破裂C.分层D.转相E.絮凝乳滴聚集成团但保持乳滴的完整分散体而不呈现合并现象
某投保人缴净保费P=1800元,附加费比例k=10%,则该投保人缴纳的营业保费为( )元。
某企业取得3年期银行存款1000万元,年利率8%,半年付息一次,到期一次还本,筹资费用率为l%,企业所得税率为25%。该企业的银行借款资本成本为()。
德国古典哲学是马克思主义哲学的直接理论来源。()
阅读《一个小官吏之死》这篇小说的片断,完成下列题。一个极好的傍晚,一个同样极好的名叫伊万.德米特里奇.切尔维亚科夫的庶务官坐在剧院大厅第二排的围椅上,架上望远镜观看《哥纳维勒的钟》。他凝神注目,飘然欲仙。突然……在小说里经常遇到“突然”这两个字。
王珏、柳枚、江倩三人分别是三个孩子的母亲,她们带着自己的孩子一同去郊游。王珏对自己的孩子说:“真有趣,你们这三个孩子,也是一个姓王,一个姓柳,一个姓江,但是你们都不和自己的母亲同姓。”另一个姓江的孩子说:“一点都没错。”根据上述条件,请判断以下哪项为真?
在美化演示文稿版面时,下列叙述不正确的是______。
在窗体上画一个名称为Command1的命令按钮和一个名称为Text1的文本框,并编写如下事件过程:PrivateSubCommand1_Click()DimiAsInteger,aAsInteger,jAsInteger
Forthispart,youareallowed30minutestowriteashortessayonthetopicBroadenOurKnowledge.Youshouldwriteatleast1
最新回复
(
0
)