首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)二阶可导,又f(0)=0,g(0)=0,f′(0)>0,g′(0)>0,令F(x)=∫0xf(t)g(t)dt,则
设f(x),g(x)二阶可导,又f(0)=0,g(0)=0,f′(0)>0,g′(0)>0,令F(x)=∫0xf(t)g(t)dt,则
admin
2020-02-28
51
问题
设f(x),g(x)二阶可导,又f(0)=0,g(0)=0,f′(0)>0,g′(0)>0,令F(x)=∫
0
x
f(t)g(t)dt,则
选项
A、x=0是函数F(x)的极小值点
B、x=0是函数F(x)的极大值点
C、(0,F(0))是曲线y=F(x)的拐点但x=0不是F(x)的极值点
D、x=0不是函数F(x)的极值点,(0,F(0))也不是曲线y=F(x)的拐点
答案
C
解析
先求导数F′(x)=f(x)g(x)→F′(0)=0.
再求二阶导数F″(x)=f′(x)g(x)+f(x)g′(x)→F″(0)=0.
于是还要考察F(x)在x=0处的三阶导数:
F″′(x)=f″(x)g(x)+2f′(x)g′(x)+f(x)g″(x)
F″′(0)=2f′(0)g′(0)≠0.
因此(0,F(0))是曲线y=F(x)的拐点且x=0不是F(x)的极值点.故应选C.
转载请注明原文地址:https://kaotiyun.com/show/7JA4777K
0
考研数学二
相关试题推荐
设三阶矩阵A的特征值λ1=1,λ2=2,λ3=3对应的特征向量依次为α1=(1,1,1)T,α2=(1,2,4)T,α3=(1,3,9)T。求Anβ。
设三阶矩阵A的特征值λ1=1,λ2=2,λ3=3对应的特征向量依次为α1=(1,1,1)T,α2=(1,2,4)T,α3=(1,3,9)T。将向量β=(1,1,3)T用α1,α2,α3线性表示;
设P(χ)在[0,+∞)连续且为负值,y=y(戈)在[0,+∞)连续,在(0,+∞)满足y′+P(χ)y>0且y(0)≥0,求证:y(χ)在[0,+∞)单调增加.
设有3维列向量问λ取何值时(1)β可由α1,α2,α3线性表示,且表达式唯一?(2)β可由α1,α2,α3线性表示,但表达式不唯一?(3)β不能由α1,α2,α3线性表示?
设f(χ)=,求f(χ)的间断点并判断其类型.
设A=且A~B求可逆矩阵P,使得P-1AP=B.
设y=f(χ)可导,且y′≠0.(Ⅰ)若已知y=f(χ)的反函数χ=φ(y)可导,试由复合函数求导法则导出反函数求导公式;(Ⅱ)若又设y=f(χ)二阶可导,则.
设且二阶连续可导,又,求f(x).
(07年)二阶常系数非齐次线性微分方程y"一4y’+3y=2e2x的通解为y=________.
随机试题
葡萄胎随访时必须进行的检查是
上颌磨牙进行全冠修复时,为避免食物嵌塞应有哪种观念A.生物力学B.生物材料学C.动态D.静态E.形态学
患儿,10个月,因发热,咳嗽,惊厥来院就诊,体检:体温39.8℃,咽充血,前囟平。该患儿惊厥的原因可能是
本题涉及土地增值税法及企业所得税法。府城房地产开发公司为内资企业,公司于2015年1月—2018年2月开发“东丽家园”住宅项目,发生相关业务如下:(1)2015年1月通过竞拍获得一宗国有土地使用权,合同记载总价款17000万元,并规定2015年3月1日动
读图文材料。葡萄酒用新鲜葡萄或葡萄汁酿造而成。近年来。我国葡萄酒产量及消费量快速增长。据图文材料分析。影响葡萄酒产业布局最主要的一组区位因素是()。
设函数f(x)=其中g(x)二阶连续可导,且g(0)=1.求f’(x);
Imeanttogiveyouthisbooktoday,butIforgot.
A、Peoplecansurviveifluckyenough.B、Thechanceisverysmall.C、Theycanbeprevented.D、Thepossibilitycanbeignored.B由句
Directions:Inthispart,youwillhave15minutestogooverthepassagequicklyandanswerthequestionsonAnswerSheet1.Fo
Itisessentialtobuildupyourconfidence____________(如果你想在一生中有所成就的话).
最新回复
(
0
)