首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)二阶可导,又f(0)=0,g(0)=0,f′(0)>0,g′(0)>0,令F(x)=∫0xf(t)g(t)dt,则
设f(x),g(x)二阶可导,又f(0)=0,g(0)=0,f′(0)>0,g′(0)>0,令F(x)=∫0xf(t)g(t)dt,则
admin
2020-02-28
28
问题
设f(x),g(x)二阶可导,又f(0)=0,g(0)=0,f′(0)>0,g′(0)>0,令F(x)=∫
0
x
f(t)g(t)dt,则
选项
A、x=0是函数F(x)的极小值点
B、x=0是函数F(x)的极大值点
C、(0,F(0))是曲线y=F(x)的拐点但x=0不是F(x)的极值点
D、x=0不是函数F(x)的极值点,(0,F(0))也不是曲线y=F(x)的拐点
答案
C
解析
先求导数F′(x)=f(x)g(x)→F′(0)=0.
再求二阶导数F″(x)=f′(x)g(x)+f(x)g′(x)→F″(0)=0.
于是还要考察F(x)在x=0处的三阶导数:
F″′(x)=f″(x)g(x)+2f′(x)g′(x)+f(x)g″(x)
F″′(0)=2f′(0)g′(0)≠0.
因此(0,F(0))是曲线y=F(x)的拐点且x=0不是F(x)的极值点.故应选C.
转载请注明原文地址:https://kaotiyun.com/show/7JA4777K
0
考研数学二
相关试题推荐
设三阶矩阵A的特征值λ1=1,λ2=2,λ3=3对应的特征向量依次为α1=(1,1,1)T,α2=(1,2,4)T,α3=(1,3,9)T。求Anβ。
设三阶矩阵A的特征值λ1=1,λ2=2,λ3=3对应的特征向量依次为α1=(1,1,1)T,α2=(1,2,4)T,α3=(1,3,9)T。将向量β=(1,1,3)T用α1,α2,α3线性表示;
设有3维列向量问λ取何值时(1)β可由α1,α2,α3线性表示,且表达式唯一?(2)β可由α1,α2,α3线性表示,但表达式不唯一?(3)β不能由α1,α2,α3线性表示?
计算其中D是由所围成的平面区域。
设函数y=f(x)在[a,b](a>0)连续,由曲线y=f(x),直线x=a,x=b及x轴围成的平面图形(如图3.12)绕y轴旋转一周得旋转体,试导出该旋转体的体积公式.
计算Dn=,其中n>2。
设f(χ)在[0,1]上二阶连续可导且f(0)=f(1),又|f〞(χ)|≤M,证明:|f′(χ)|≤.
设f(χ)在χ=0处二阶可导,又I==1.求f(0),f′(0),f〞(0).
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1。过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
随机试题
由于海上风暴、船体破损、海上救火导致海水浸湿等原因造成的海上损失称为()
为了减少手术区创面出血,常在局麻药中加入一定浓度的
解剖牙冠是指
根据我国《建筑法》的规定,该工程如正常开工,最迟允许日期为( )。如果该建筑单位因征地问题没有解决,而不能按期开工,超过( ),则应重新办理开工报告的批准手续。
背景国家拟投资1.5亿元建设某大型炼油装置及附属罐区工程项目,工程内容包括:土建工程、给水排水管网、供热系统管网、通风与空调系统管网、燃气管道系统、塔类设备、金属储罐、工艺管道、电气仪表等工程。建设项目建议书批准后对该项目进行了技术和经
某城市综合体,地上六层、地下三层,建筑高度23.0m,地上1~6层为商业用房,地上部分每层建筑面积为2500m2,地下主要使用性质为汽车库、设备用房。建筑防火及消防设施配置均满足现行有关国家工程建设消防技术标准的要求。地下消防水池容积为500m3
期货从业人员在执业过程中应当对期货交易各方高度负责,( ),恪尽职守,珍惜和维护期货业和从业人员的职业声誉,保障期货市场稳健运行。
明仁公司经营多种产品,最近两年的财务报表数据摘要如下(单位:万元):项目 上年 今年净利润 1000 1200所有者权益
你是省教育部门的工作人员,高考期间,为严肃考场纪律,领导让你到某县巡查,但是到了当地。主管部门不配合,学生家长也进行阻挠。你怎么办?
【B1】【B7】
最新回复
(
0
)