首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)二阶可导,又f(0)=0,g(0)=0,f′(0)>0,g′(0)>0,令F(x)=∫0xf(t)g(t)dt,则
设f(x),g(x)二阶可导,又f(0)=0,g(0)=0,f′(0)>0,g′(0)>0,令F(x)=∫0xf(t)g(t)dt,则
admin
2020-02-28
45
问题
设f(x),g(x)二阶可导,又f(0)=0,g(0)=0,f′(0)>0,g′(0)>0,令F(x)=∫
0
x
f(t)g(t)dt,则
选项
A、x=0是函数F(x)的极小值点
B、x=0是函数F(x)的极大值点
C、(0,F(0))是曲线y=F(x)的拐点但x=0不是F(x)的极值点
D、x=0不是函数F(x)的极值点,(0,F(0))也不是曲线y=F(x)的拐点
答案
C
解析
先求导数F′(x)=f(x)g(x)→F′(0)=0.
再求二阶导数F″(x)=f′(x)g(x)+f(x)g′(x)→F″(0)=0.
于是还要考察F(x)在x=0处的三阶导数:
F″′(x)=f″(x)g(x)+2f′(x)g′(x)+f(x)g″(x)
F″′(0)=2f′(0)g′(0)≠0.
因此(0,F(0))是曲线y=F(x)的拐点且x=0不是F(x)的极值点.故应选C.
转载请注明原文地址:https://kaotiyun.com/show/7JA4777K
0
考研数学二
相关试题推荐
设三阶矩阵A的特征值λ1=1,λ2=2,λ3=3对应的特征向量依次为α1=(1,1,1)T,α2=(1,2,4)T,α3=(1,3,9)T。求Anβ。
设有3维列向量问λ取何值时(1)β可由α1,α2,α3线性表示,且表达式唯一?(2)β可由α1,α2,α3线性表示,但表达式不唯一?(3)β不能由α1,α2,α3线性表示?
设函数f(x)在[0,π]上连续,且∫0πf(x)sinxdx=0,∫0πf(x)cosxdx=0.证明:在(0,π)内f(x)至少有两个零点.
计算其中D是由所围成的平面区域。
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。证明对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1)。
设函数f(x)和g(x)和[a,b]上存在二阶导数,并且g〞(x)≠0,f(a)=f(b)=g(a)=g(b)=O,试证(1)在开区间(a,b)内g(x)≠0;(2)在开区间(a,b)内至少存在一点ε,使
设f(x)二阶连续可导且f(0)=f’(0)=0,f’’(x)>0.曲线y=f(x)上任一点(x,f(x))(x≠0)处作切线,此切线在X轴上的截距为u,求
随机试题
现有一批药品需要紧急从北京运到成都,这批药品最佳的运输方式是()。
社会主义精神文明建设的指导思想是什么?
ThewinterinIcelandhasbeenoneoftheworstever.AnanimalthatwasborninIcelandandjustreturnedtherehasenjoyedthe
A.心室颤动B.心室扑动C.心房扑动D.心房颤动E.尖端扭转型室速以等电位线为轴,QRS-T波群的主峰方向连续自上而下,又自下而上的扭转
以下关于成釉细胞瘤的说法,不恰当的是
隧道结构构造是由主体构造物和附属构造物两大类组成的,其主体构造物的目的是()。
专门融通短期资金和交易期限在1年以内(包括1年)的有价证券市场是()。
根据有关刑事诉讼法律规定,合议庭对复杂重大案件,可以提请院长决定将案件提交审判委员会讨论。合议庭提请院长将案件提交审判委员会讨论的时间应是在()。
某供应商数据库中的供应关系为SPJ(供应商号,零件号,工担号,数量),如下命令查询某工程至少用了3家供应商(包含3家)供应的零件的平均数量,并按工程号的降序排列。SELECT工程号,(14)FROMSPJGROUPBY工程号(15)
Everytimeyoutrytoansweraquestionthataskswhy,youengageintheprocessofcausalanalysis—youattempttodetermineac
最新回复
(
0
)