首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求f(x,y)=x+xy一x2一y2在闭区域D={(x,y)|0≤x≤1,0≤y≤2)上的最大值和最小值.
求f(x,y)=x+xy一x2一y2在闭区域D={(x,y)|0≤x≤1,0≤y≤2)上的最大值和最小值.
admin
2019-02-23
58
问题
求f(x,y)=x+xy一x
2
一y
2
在闭区域D={(x,y)|0≤x≤1,0≤y≤2)上的最大值和最小值.
选项
答案
这是闭区域上求最值的问题.由于函数f(x,y)=x+xy一x
2
一y
2
在闭区域D上连续,所以一定存在最大值和最小值. 首先求f(x,y)=x+xy—x
2
一y
2
在闭区域D内部的极值: 解方程组[*].由 g(x,y)=(f"
xy
)
2
一f"
xx
f"
yy
=一3 得f(x,y)=x+xy一x
2
—y
2
在闭区域D内部的极大值[*]. 再求f(x,y)在闭区域D边界上的最大值与最小值: 这是条件极值问题,边界直线方程即为约束条件. 在x轴上约束条件为y=0(0≤x≤1),于是拉格朗日函数为 F(x,y,λ)=x+xy—x
2
一y
2
+λy, 解方程组[*] 在下面边界的端点(0,0),(1,0)处f(0,0)=0,f(1,0)=0,所以,下面边界的最大值为[*],最小值为0. 同理可求出: 在上面边界上的最大值为一2,最小值为一4; 在左面边界上的最大值为0,最小值为一4; 在右面边界上的最大值为[*],最小值为一2. 比较以上各值,可知函数f(x,y)=x+xy一x
2
一y
2
在闭区域D上的最大值为[*],最小值为一4.
解析
转载请注明原文地址:https://kaotiyun.com/show/blj4777K
0
考研数学二
相关试题推荐
求微分方程xy’+(1-x)y=e2x(x>0)的满足的特解.
设当u>0时f(u)一阶连续可导,且f(1)=0,又二元函数z=f(ex-ey)满足=1,求f(u).
设曲线L位于xOy平面的第一象限内,L上任意一点M处的切线与y轴总相交,交点为A,已知|MA|=|OA|,且L经过点,求L的方程.
求y’’-2y’-ex=0满足初始条件y(0)=1,y’(0)=1的特解.
求下列极限:
已知抛物线y=aχ+bχ+c经过点P(1,2),且在该点与圆相切,有相同的曲率半径和凹凸性,求常数a,b,c.
某公司可通过电台及报纸两种方式做销售某种商品的广告,根据统计资料,销售收入R(万元)与电台广告费z,(万元)及报纸广告费用x2(万元)之间的关系有如下经验公式:R=15+14x2+32x2—8x1x2一2x12一10x22.(1)在广告
设且f"(0)存在,求a,b,c.
设且A~B.求a;
随机试题
某男,左足怕冷、疼痛、间歇性跛行年余。月余来足痛转为持续性静止痛,夜间痛剧,不能人睡,足背动脉搏动消失。应诊断为()
二维随机变量(X,Y),X—N(0,1),Y—N(0,4),U=X+Y,V=X+2Y,则U、Y不相关的充要条件是()。
在空气中用波长为λ单色光进行双缝干涉实验,观测到相邻明条纹间的间距为1.33mm,当把实验装置放在水中(水的折射率为1.33)时,则相邻明条纹的间距变为()。
李某与王某共同出资在某市开设香客来餐饮有限公司,于2010年3月28日办理了税务登记。由于效益不好,餐饮公司于2011年11月31日停业。税务部门对该餐饮公司纳税情况进行检查时,发现其在经营期间应缴纳营业税、城建税、教育费附加等共计70834元,但餐饮公司
1.给定材料政府提供的公共产品并不全是可以计量、具有具体生产流程的有形物质实体,其有形“产品”载体可以是以“软件”形式出现的,如文件、证件等,更多的是无形“产品”的表现形式,如公务员的服务态度和工作效率、政府的形象和保障力度等,产品质量的实质是满
公文最主要的表达方式是()。
为节省测验成本,将某个信度为0.98的测验由500题减少为300题,则其信度变为()。
WhenfamiliesgatherforChristmasdinner,somewillsticktoformaltraditionsdatingbacktoGrandma’sgeneration.Theirtable
在我国现阶段,社会主义道德建设应该以()
Somepeopleseemtohaveaknack(诀窍)forlearninglanguages.Theycanpickupnewvocabulary,masterrulesofgrammar,andlearn
最新回复
(
0
)