首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有向量组(Ⅰ):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(Ⅰ)与向量组(Ⅱ)等价?当a为何值
设有向量组(Ⅰ):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(Ⅰ)与向量组(Ⅱ)等价?当a为何值
admin
2021-11-09
50
问题
设有向量组(Ⅰ):α
1
=(1,0,2)
T
,α
2
=(1,1,3)
T
,α
3
=(1,-1,a+2)
T
和向量组(Ⅱ):β
1
=(1,2,a+3)
T
,β
2
=(2,1,a+6)
T
,β
3
=(2,1,a+4)
T
.试问:当a为何值时,向量组(Ⅰ)与向量组(Ⅱ)等价?当a为何值时,向量组(Ⅰ)与(Ⅱ)不等价?
选项
答案
方法1:由于行列式|α
1
,α
2
,α
3
|=a+1,故当a≠-1时,秩[α
1
,α
2
,α
3
]=3.方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
i
(i=1,2,3)有解(且有唯一解),所以向量组(Ⅱ)可由向量组(Ⅰ)线性表示;又由行列式|β
1
,β
2
,β
3
|=6≠0,同理可知向量组(Ⅰ)可由(Ⅱ)线性表示.故当a≠-1时.(Ⅰ)与(Ⅱ)等价.当a=1时,由于秩[α
1
,α
2
,α
3
]≠秩[α
1
,α
2
,α
3
┆β
1
],故方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
1
无解,即β
1
不能由向量组(Ⅰ)线性表示,所以(Ⅰ)与(Ⅱ)不等价. 方法2:若(Ⅰ)与(Ⅱ)等价,则秩(Ⅰ)=秩(Ⅱ),而秩(Ⅱ)=3,故秩(Ⅰ)=3,[*]|α
1
,α
2
,α
3
|=a+1≠0,[*]a≠-1;反之,若a≠-1,则(Ⅰ)和(Ⅱ)都是线性无关组,而α
1
,α
2
,α
3
,β
i
线性相关(4个3维向量必线性相关),[*]β
i
可由α
1
,α
2
,α
3
线性表示(i=1,2,3),同理知α
j
可由β
1
,β
2
,β
3
线性表示(j=1,2,3),故(Ⅰ)与(Ⅱ)等价.综上可知,(Ⅰ)与(Ⅱ)等价[*]a≠-1.
解析
转载请注明原文地址:https://kaotiyun.com/show/7My4777K
0
考研数学二
相关试题推荐
设f(χ)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt-f(2)+f(3).证明:(1)存在ξ1,ξ2∈(0,3),使得f′(ξ1)=f′(ξ2)=0.(2)存在ξ∈(0,3),使得f〞(ξ)-2f′(ξ
微分方程yy〞=1+y′2化满足初始条件y(0)=1,y′(0)=0的解为_______.
微分方程(2+3)y〞-4y′的通解为_______.
设函数f(x)连续,则等于().
设,求a,b的值。
设直线y=ax与抛物线y=x2所围成的图形面积为S1,它们与直线x=1所围成的图形面积为S2,且a<1.确定a,使S1+S2达到最小,并求出最小值。
求下列极限,能直接使用洛必达法则的是[].
设f(χ),φ(χ)在点χ=0某邻域内连续,且χ→0时,f(χ)是φ(χ)的高阶无穷小,则χ→0时,∫0χf(t)sintdt是∫0χtφ(t)dt的()无穷小.【】
设求∫02πf(x-π)dx.
随机试题
社会工作者小林是养老院新入职的员工。在入职第一周,督导者老杨向他讲解了养老院里老人的生活规律、饮食习惯和兴趣爱好。老杨的讲解内容属于()。
十八大指出,加强社会建设的重点是【】
霍乱主要经()流脑主要经()
气调养护中自然降氧的标准是
混凝土中氯离子含量的测定方法包括()。
A县人民政府为建办公楼,向该县B银行贷款500万元,到期未能偿还,B银行以A县人民政府为被告向人民法院提起诉讼。该案所涉及的法律关系()。[2006年11月二级真题]
ABC公司财务经理正在评估两个投资项目X和Y。两个项目的初始投入相同,而且第一年都有正的现金流入。但是在项目的周期,这两个项目都出现了现金流的波动。ABC财务经理选择使用净现值法来评估X和Y这两个项目,那么该经理的选择是否正确?
积极型投资者策略以获得市场组合平均收益为主要目标;消极型投资者策略则旨在通过基本分析和技术分析构造投资组合获得超过市场组合收益的回报。()
下列计量尺度中,计量所形成的数据表现为类别但不区分顺序的是()。
有以下程序 void change(int k[]){k[0]=k[5];} main() { int x[10]={1,2,3,4,5,6,7,8,9,10},n=0; while(
最新回复
(
0
)