首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有向量组(Ⅰ):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(Ⅰ)与向量组(Ⅱ)等价?当a为何值
设有向量组(Ⅰ):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(Ⅰ)与向量组(Ⅱ)等价?当a为何值
admin
2021-11-09
91
问题
设有向量组(Ⅰ):α
1
=(1,0,2)
T
,α
2
=(1,1,3)
T
,α
3
=(1,-1,a+2)
T
和向量组(Ⅱ):β
1
=(1,2,a+3)
T
,β
2
=(2,1,a+6)
T
,β
3
=(2,1,a+4)
T
.试问:当a为何值时,向量组(Ⅰ)与向量组(Ⅱ)等价?当a为何值时,向量组(Ⅰ)与(Ⅱ)不等价?
选项
答案
方法1:由于行列式|α
1
,α
2
,α
3
|=a+1,故当a≠-1时,秩[α
1
,α
2
,α
3
]=3.方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
i
(i=1,2,3)有解(且有唯一解),所以向量组(Ⅱ)可由向量组(Ⅰ)线性表示;又由行列式|β
1
,β
2
,β
3
|=6≠0,同理可知向量组(Ⅰ)可由(Ⅱ)线性表示.故当a≠-1时.(Ⅰ)与(Ⅱ)等价.当a=1时,由于秩[α
1
,α
2
,α
3
]≠秩[α
1
,α
2
,α
3
┆β
1
],故方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
1
无解,即β
1
不能由向量组(Ⅰ)线性表示,所以(Ⅰ)与(Ⅱ)不等价. 方法2:若(Ⅰ)与(Ⅱ)等价,则秩(Ⅰ)=秩(Ⅱ),而秩(Ⅱ)=3,故秩(Ⅰ)=3,[*]|α
1
,α
2
,α
3
|=a+1≠0,[*]a≠-1;反之,若a≠-1,则(Ⅰ)和(Ⅱ)都是线性无关组,而α
1
,α
2
,α
3
,β
i
线性相关(4个3维向量必线性相关),[*]β
i
可由α
1
,α
2
,α
3
线性表示(i=1,2,3),同理知α
j
可由β
1
,β
2
,β
3
线性表示(j=1,2,3),故(Ⅰ)与(Ⅱ)等价.综上可知,(Ⅰ)与(Ⅱ)等价[*]a≠-1.
解析
转载请注明原文地址:https://kaotiyun.com/show/7My4777K
0
考研数学二
相关试题推荐
设f(χ)=,在点χ=0处连续,则a=_______,b=_______.
设f(χ)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明:存在ξ∈(0,1),使得f′(ξ)sinξ+f(ξ)cosξ=0.
曲线在点(0,1)处的法线方程为_______.
求微分方程y〞+4y′+4y=0的通解.
微分方程(2+3)y〞-4y′的通解为_______.
设f(x)可微,且满足,则f(x)=.
求椭圆与椭圆所围成的公共部分的面积。
设f(x)为连续函数,计算,其中D是由y=x3,y=1,x=-1围成的区域。
计算二重积分,其中D是曲线(x2+y2)2=a2(x2-y2)围成的区域。
设A是m×n矩阵,且非齐次线性方程组AX=b满足r(A)==r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个。
随机试题
多寐的常见原因是
正常组织显影,而病变组织不显影的显像是
葡萄胎清官术后,关于随访哪一项是错误的?
男性,30岁,突感上腹部剧痛。查体:血压130/80mmHg,脉搏110次/分,板样腹。肠鸣音消失。血红蛋白120g/L,血白细胞数8.0×109/L。以下提示病情危险的是
在下列各项中,被国际私法称为先决问题的是哪几项?
在新建房地的情况下,成本法的基本公式为:新建房地价格=土地取得成本+土地开发成本+()+管理费用+投资利息+销售税费+开发利润。
Aroundtheworldmoreandmorepeoplearetakingpartindangeroussportsandactivities.Ofcourse,therehavealwaysbeenpeop
你单位要组织筹办一场军民融合发展提案座谈会的调研活动,如果这项工作由你负责,谈谈你将如何开展?
对在中华人民共和国领域内违法犯罪的外国人、无国籍人、华侨,在大陆违法犯罪的台湾居民和在内地违法犯罪的香港、澳门特别行政区居民,可以决定劳动教养。()
Oneofthemisconceptionsaboutelitesportisthatgreatathleteshavenothingincommonwithnormalhumanbeings.【C1】______the
最新回复
(
0
)