首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下列命题中: ①若f(x)=A,g(x)不存在,则f(x)g(x)不存在。 ②f(x),g(x)分别是x-a的n阶与m阶无穷小,若n﹥m,则是x-a的n-m阶无穷小。 ③若f(x)在x=x0处存在左右导数且f﹢’ (x0)≠f﹣’ (x0),则f(x)在x
下列命题中: ①若f(x)=A,g(x)不存在,则f(x)g(x)不存在。 ②f(x),g(x)分别是x-a的n阶与m阶无穷小,若n﹥m,则是x-a的n-m阶无穷小。 ③若f(x)在x=x0处存在左右导数且f﹢’ (x0)≠f﹣’ (x0),则f(x)在x
admin
2019-12-06
59
问题
下列命题中:
①若
f(x)=A,
g(x)不存在,则
f(x)g(x)不存在。
②f(x),g(x)分别是x-a的n阶与m阶无穷小,若n﹥m,则
是x-a的n-m阶无穷小。
③若f(x)在x=x
0
处存在左右导数且f
﹢
’ (x
0
)≠f
﹣
’ (x
0
),则f(x)在x=x
0
处连续。
④若函数极限
f(x)=A,则数列极限
f(n)=A。
⑤若数列极限
f(2n-1)=
f(2n)=A,则函数极限
f(x)=A。
正确的个数有( )
选项
A、2个
B、3个
C、4个
D、5个
答案
B
解析
①中当A=0时,
f(x)g(x)可能存在。如f(x)=0,则
f(x)=0,
f(x)g(x)=0,故①错误。
②中由题干知
=A≠0,
=B≠0,
若n﹥m,有
故②正确。
③中若f(x)在x=x
0
处存在f
﹢
’(x)与f
﹣
’(x),则f(x)在x=x
0
处右连续及左连续→f(x)在x=x
0
处连续,故③正确。
④和⑤由数列极限和函数极限的关系可知,若函数极限
f(x)=A,则任意x
n
→﹢∞(n→﹢∞)均有
=A。若只有某x
n
→﹢∞,
则
f(x
n
)=A
f(x)=A。如f(x)=sinπx,f(n)=0,
f(n)=0,但
f(x)不存在,故④正确,⑤错误。
转载请注明原文地址:https://kaotiyun.com/show/VTA4777K
0
考研数学二
相关试题推荐
设f(x)=,且f’(0)存在,则a=______,b=________,c=_______
=_______.
=______。
在xOy平面上,平面曲线方程则平面曲线与x轴的交点的坐标是___________.
椭圆2x2+y2=3在点(1,一1)处的切线方程为________.
设在[0,+∞]上函数f(x)有连续导数,且f’(x)≥k>0,f(0)<0.证明:f(x)在(0,+∞)内有且仪有一个零点.
设函数y=f(x)在[a,b](a>0)连续,由曲线y=f(x),直线x=a,x=b及x轴围成的平面图形(如图3.12)绕y轴旋转一周得旋转体,试导出该旋转体的体积公式.
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1。过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
验证函数f(x)=x3+x2在区间[-1,0]上满足罗尔定理.
当陨石穿过大气层向地面高速坠落时,陨石表面与空气摩擦产生的高温使陨石燃烧并不断挥发,实验证明,陨石挥发的速率(即体积减小的速率)与陨石表面积成正比,现有一陨石是质量均匀的球体,且在坠落过程中始终保持球状.若它在进入大气层开始燃烧的前3s内,减小了体积的,问
随机试题
男性,34岁。腰痛1年余.近半年膝踝关节疼痛,伴尿频、尿痛。查体:结膜充血,双肾无叩击痛,膝踝关节肿胀有压痛。化验:HLA-B27(+)。尿WBC20~30/HP,管型(一)。此病人最可能的诊断是
患者,女,38岁。慢性腹泻已五年余,大便每日2~3次,稀便不成形,纳呆,腹胀,周身乏力,消瘦,舌淡苔白、脉缓,临床诊断最可能是
确定施工导流的标准依据的指标有()。
审计风险取决于重大错报风险和检查风险,下列表述中正确的是()。
教师在教学中的主导作用就是充分调动学生的积极性。()
直肠内镜检查最危险的并发症是
Therangeandqualityof【C11】______emotionsarepotentiallythesameforallhumangroups.Inthecourseof【C12】______inaparti
ARideinaCable-carArideinacable-carisoneoftheexcitingandenjoyableexperiencesachildcanhave.InSwitzerland
I______onseeingthemanager.Theserviceinthishotelisterrible.
穿上风情的旗袍,迈着小凤仙的步子,一个女人最美丽的日子流转在房间里,来世今生,恍如隔世。
最新回复
(
0
)