首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下列命题中: ①若f(x)=A,g(x)不存在,则f(x)g(x)不存在。 ②f(x),g(x)分别是x-a的n阶与m阶无穷小,若n﹥m,则是x-a的n-m阶无穷小。 ③若f(x)在x=x0处存在左右导数且f﹢’ (x0)≠f﹣’ (x0),则f(x)在x
下列命题中: ①若f(x)=A,g(x)不存在,则f(x)g(x)不存在。 ②f(x),g(x)分别是x-a的n阶与m阶无穷小,若n﹥m,则是x-a的n-m阶无穷小。 ③若f(x)在x=x0处存在左右导数且f﹢’ (x0)≠f﹣’ (x0),则f(x)在x
admin
2019-12-06
44
问题
下列命题中:
①若
f(x)=A,
g(x)不存在,则
f(x)g(x)不存在。
②f(x),g(x)分别是x-a的n阶与m阶无穷小,若n﹥m,则
是x-a的n-m阶无穷小。
③若f(x)在x=x
0
处存在左右导数且f
﹢
’ (x
0
)≠f
﹣
’ (x
0
),则f(x)在x=x
0
处连续。
④若函数极限
f(x)=A,则数列极限
f(n)=A。
⑤若数列极限
f(2n-1)=
f(2n)=A,则函数极限
f(x)=A。
正确的个数有( )
选项
A、2个
B、3个
C、4个
D、5个
答案
B
解析
①中当A=0时,
f(x)g(x)可能存在。如f(x)=0,则
f(x)=0,
f(x)g(x)=0,故①错误。
②中由题干知
=A≠0,
=B≠0,
若n﹥m,有
故②正确。
③中若f(x)在x=x
0
处存在f
﹢
’(x)与f
﹣
’(x),则f(x)在x=x
0
处右连续及左连续→f(x)在x=x
0
处连续,故③正确。
④和⑤由数列极限和函数极限的关系可知,若函数极限
f(x)=A,则任意x
n
→﹢∞(n→﹢∞)均有
=A。若只有某x
n
→﹢∞,
则
f(x
n
)=A
f(x)=A。如f(x)=sinπx,f(n)=0,
f(n)=0,但
f(x)不存在,故④正确,⑤错误。
转载请注明原文地址:https://kaotiyun.com/show/VTA4777K
0
考研数学二
相关试题推荐
微分方程y2dχ+(χ2-χy)dy=0的通解为_______.
I(x)=∫0x在区间[-1,1]上的最大值为________.
设三阶行列式D3的第二行元素分别为1、一2、3,对应的代数余子式分别为一3、2、1,则D3=_________。
设4阶矩阵A的秩为2,则r(A*)=_______.
设f(x)的一个原函数为lnX,则f’(x)=______.
设函数x=x(t)由方程tcosx+x=0确定,又函数y=y(x)由方程ey-2-xy=1确定,求复合函数y=y(x(t))的导数
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=(1,一1,1)T是A的属于特征值λ1的一个特征向量,记B=A5一4A3+E,其中E为三阶单位矩阵。验证α1是矩阵B的特征向量,并求矩阵B的全部特征值与特征向量;
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1。过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
设函数f(u)在(0,+∞)内具有二阶导数,且满足等式(1)验证(2)若f(1)=0,f’(1)=1,求函数f(u)的表达式.
设f(x)=∫0x2et2dt,g(x)在x=0处连续且满足g(x)=1+2x+o(x)(x→0)。又F(x)=f[g(x)],则F’(0)=()
随机试题
拒绝+容许的忽视型教养方式,父母对子女缺少爱的情感和积极反应,又缺少()的一种教养方式。
应用胰岛素治疗糖尿病的作用机制属于
腱反射和肌张力亢进,扑翼样震颤无法引出是肝性脑病哪个分期的表现
某装饰装修工程,下列单项合同额属于中型工程的是()万元。
收入类账户期末一般是()。
发生的有关固定资产和投资性房地产有关的业务如下:甲企业为增值税一般纳税人,2009—2012年有关固定资产等的业务如下:(1)2009年因生产需要决定采用自营方式建造一幢办公楼。相关资料如下:2009~1月1日,购入工程用专项物资2000万元,增
下列关于企业国有产权向管理层转让的相关规定中.符合法律要求的有()。
根据合伙企业法律制度的规定,下列关于普通合伙企业合伙人的表述中,正确的是()。(2017年)
如果一国的国际收支因为本国的通货膨胀率高于他国的通货膨胀率而出现不均衡,则称该国的国际收支不均衡是()
患者张先生手术成功之后,心情一直不错,每天都是笑呵呵的。这段时间张先生的情绪状态是
最新回复
(
0
)