首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下列命题中: ①若f(x)=A,g(x)不存在,则f(x)g(x)不存在。 ②f(x),g(x)分别是x-a的n阶与m阶无穷小,若n﹥m,则是x-a的n-m阶无穷小。 ③若f(x)在x=x0处存在左右导数且f﹢’ (x0)≠f﹣’ (x0),则f(x)在x
下列命题中: ①若f(x)=A,g(x)不存在,则f(x)g(x)不存在。 ②f(x),g(x)分别是x-a的n阶与m阶无穷小,若n﹥m,则是x-a的n-m阶无穷小。 ③若f(x)在x=x0处存在左右导数且f﹢’ (x0)≠f﹣’ (x0),则f(x)在x
admin
2019-12-06
40
问题
下列命题中:
①若
f(x)=A,
g(x)不存在,则
f(x)g(x)不存在。
②f(x),g(x)分别是x-a的n阶与m阶无穷小,若n﹥m,则
是x-a的n-m阶无穷小。
③若f(x)在x=x
0
处存在左右导数且f
﹢
’ (x
0
)≠f
﹣
’ (x
0
),则f(x)在x=x
0
处连续。
④若函数极限
f(x)=A,则数列极限
f(n)=A。
⑤若数列极限
f(2n-1)=
f(2n)=A,则函数极限
f(x)=A。
正确的个数有( )
选项
A、2个
B、3个
C、4个
D、5个
答案
B
解析
①中当A=0时,
f(x)g(x)可能存在。如f(x)=0,则
f(x)=0,
f(x)g(x)=0,故①错误。
②中由题干知
=A≠0,
=B≠0,
若n﹥m,有
故②正确。
③中若f(x)在x=x
0
处存在f
﹢
’(x)与f
﹣
’(x),则f(x)在x=x
0
处右连续及左连续→f(x)在x=x
0
处连续,故③正确。
④和⑤由数列极限和函数极限的关系可知,若函数极限
f(x)=A,则任意x
n
→﹢∞(n→﹢∞)均有
=A。若只有某x
n
→﹢∞,
则
f(x
n
)=A
f(x)=A。如f(x)=sinπx,f(n)=0,
f(n)=0,但
f(x)不存在,故④正确,⑤错误。
转载请注明原文地址:https://kaotiyun.com/show/VTA4777K
0
考研数学二
相关试题推荐
函数f(x)=|4x3一18x2+27|在区间[0,2]上的最小值为___________,最大值为_________.
设A=,B为三阶非零矩阵,且AB=0,则f=__________.
=_______.
=_______.
设A为四阶可逆方阵,将A第3列乘3倍再与第1列交换位置,得到矩阵B,则B-1A=______.
设f(x)的一个原函数为lnX,则f’(x)=______.
从一艘破裂的油轮中渗漏出来的油,在海面上逐渐扩散形成油层.设在扩散的过程中,其形状一直是一个厚度均匀的圆柱体,其体积也始终保持不变.已知其厚度h的减少率与h3成正比,试证明:其半径r的增加率与r3成反比.
在上半平面求一条凹曲线(图6.2),使其上任一点P(χ,Y)处的曲率等于此曲线在该点的法线PQ长度的倒数(Q是法线与χ轴的交点),且曲线在点(1,1)处的切线与χ轴平行.
验证函数在[0,2]上满足拉格朗日定理.
设函数f(u)在(0,+∞)内具有二阶导数,且满足等式(1)验证(2)若f(1)=0,f’(1)=1,求函数f(u)的表达式.
随机试题
简述虚拟没备实现的基本条件和实现原理。
下列情形中,对注册会计师执行审计业务的独立性产生影响的是()
获得性膜功能不包括A.修复或保护釉质表面B.为釉质提供有选择的渗透性C.影响特异性口腔微生物对牙面的附着D.作为菌斑微生物的底物和营养E.是牙齿防御系统的组成部分
骨上袋的病理变化主要是
(2005年)有一横截面面积为A的圆截面杆件受轴向拉力作用,在其他条件不变时,若将其横截面改为面积仍为A的空心圆,则杆的()。
美国经济学家提出了第三代货币,即()将取代纸制货币。
大型古装历史剧《芈月传》热播之后,剧中春秋战国时期人物的服饰和发型等大遭网友吐槽“艳俗”、“穿越唐宋明清”,甚至有网友表示,以后这类古装剧必须在后面加个说明:“本剧过于夸张的服饰和发型纯属虚构,如有雷同,实属巧合!”材料启示我们()。
“原因和结果是我们思维的创造物”,“在自然界中,既没有原因,也没有结果”,对这句话理解正确的有()。
A、IknowmanybusinesspeopleattheBeachsideHotel.B、TheBeachsideistheonlyfavoritehotelformanybusinesspeople.C、Man
ManypeoplewonderwhysomemenwanttoliveonthemoonItis【C1】______notthekindofplacewheremostmenwouldchoosetoliv
最新回复
(
0
)