首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式 。 (1)求导数f(x); (2)证明:当x≥0时,不等式e-x≤f(x)≤1成立.
函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式 。 (1)求导数f(x); (2)证明:当x≥0时,不等式e-x≤f(x)≤1成立.
admin
2019-08-01
36
问题
函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式
。
(1)求导数f(x);
(2)证明:当x≥0时,不等式e
-x
≤f(x)≤1成立.
选项
答案
[详解1](1)根据题设,有 (x+1)f’(x)+(x+1)f(x)-∫
0
x
f(x)dt=0, 上式两边对x求导,得 (x+1)f"(x)=-(x+2)f’(x), 即[*]。 两边积分,得 lnf’(x)=-x+ln(x+1)+lnC, 即有[*]。 在题设等式中令x=0,得f’(0)+f(0)=0,又f(0)=1,于是f’(0)=-1,代入f’(x)的 表达式,得C=-1,故有[*] (2)当x≥0时,f’(x)<0,即f(x)单调减少,又f(0)=1,所以 f(x)≤f(0)=1. 设ψ(x)=f(x)-e
-x
,则ψ(0)=0,ψ’(x)=f’(x)+e
x
=[*]。 当x≥0时,ψ’(x)≥0,即ψ(x)单调增加,因而ψ(x)≥ψ(0)=0,即有 f(x)≥e
-x
. 综上所述,当x≥0时,成立不等式e
-x
≤f(x)≤1. [详解2](1)解法同详解1. (2)由于f(x)=f(0)+∫
0
x
f’(t)dt=[*],由于当t≥0时,[*],于是由定积分的性质得 [*], 因此,当x≥0时,有e
-x
≤f(x)≤1.
解析
[分析] 含有变限的定积分问题,一般都是先求导,引出一微分方程.本题若直接求导不能消去积分,因此应先乘以x+1,再求导.(2)中不等式的证明需要利用(1)中的结果,引进适当的辅助函数后,用单调性即可完成证明.
[评注1]将方程
化为(1+x)f’(x)+(1+x)f(x)-∫
0
x
f(t)dt=0的目的是通过求导能消去变限积分∫
0
x
f(t)dt,应注意掌握这种技巧.
[评注2] 如果已知f’(x)的表达式或具有某种性质,但不能通过不定积分求出f(x) 的表达式,则可通过变限积分建立f(x)与f’(x)之间的联系,即有f(x)=f(a)+∫
a
x
f’(t)dx.
转载请注明原文地址:https://kaotiyun.com/show/7PN4777K
0
考研数学二
相关试题推荐
f(x)在[-1,1]上三阶连续可导,且f(-1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(-1,1),使得f’’’(ξ)=3.
设f(x)在[0,1]上连续,在(0,1)内存在二阶导数,且f(0)=0,f(1)=1,证明:对任意的a>0,b>0,存在ξ,η∈(0,1),使得=a+b.
设f(x)在x0的邻域内四阶可导,且|f(x)(4)|≤M(M>0).证明:对此邻域内任一异于x0的点x,有|f’’(x0)-(x-x0)2,其中x’为x关于x0的对称点.
求函数的反函数.
设f(x)在x=a处的左右导数都存在,则f(x)在x=a处().
设二阶常系数线性微分方程y’’+ay’+by=cex有特解y=e2x+(1+x)ex.确定常数a,b,c,并求该方程的通解.
设函数f(x)连续,下列变上限积分函数中,必为偶函数的是().
计算下列不定积分:
求下列不定积分:(Ⅰ)∫arcsinx.arccosxdx;(Ⅱ)∫x2sin2xdx;(Ⅲ)
设单位质点在水平面内作直线运动,初速度v|t=0=v0.已知阻力与速度成正比(比例系数为1),问t为多少时此质点的速度为?并求到此时刻该质点所经过的路程.
随机试题
工程量清单中有标价的单价或总额包括了工、料、机、管理、利润、缺陷修复、税金等费用,以及合同中明示或暗示的所有()。
绝大多数的政策变动都采取的方式是()
既抑制原核生物又抑制真核生物蛋白质生物合成的抗生素是
()决定了投资项目的实际规模。
负有安全生产监督管理职责部门的职权包括()。
养花专业户李某为防止偷花,在花房周围私拉电网。一日晚,白某偷花不慎触电,经送医院抢救,不治身亡。李某对这种结果的主观心理态度是什么?()
上述几个地区中,卫生机构总数最多的地区是()。
所有的金属都能导电,铜是金属,所以铜能导电。以下哪项与上文推理形式相同?
等价分类技术是【】设计方案的一种。
Theterm"jointinternationalbusinessventure",jointventureforshort,hascometomeanmanythingstomanypeople.Itsometi
最新回复
(
0
)