首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2006年试题,21)设3阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=O的两个解. 求正交矩阵Q和对角矩阵A,使得QTAQ=A.
(2006年试题,21)设3阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=O的两个解. 求正交矩阵Q和对角矩阵A,使得QTAQ=A.
admin
2013-12-27
40
问题
(2006年试题,21)设3阶实对称矩阵A的各行元素之和均为3,向量α
1
=(一1,2,一1)
T
,α
2
=(0,一1,1)
T
是线性方程组Ax=O的两个解.
求正交矩阵Q和对角矩阵A,使得Q
T
AQ=A.
选项
答案
因为A是实对称矩阵,所以α与α
1
,α
2
正交,故只需再得α
1
,α
2
正交化.取β
1
=α
1
=(一1,2,一1)
T
,[*]再将α,β
1
,β
2
单位化得[*]令Q=[r
1
,r
2
,r
3
],则Q
-1
=Q
T
,由A足实对称矩阵必可相似对角化,得[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/7R54777K
0
考研数学一
相关试题推荐
设函数f(x)对任意x均满足等式f(1+x)=af(x),且有f’(0)=b,其中a,b为非零常数,则()
设向量组α1=(a,3,1)T,α2=(2,b,3)T,α3=(1,2,1)T,α4=(2,3,1)T的秩为2,求a,b的值及该向量组的一个极大线性无关组,并把其余向量用此极大线性无关组线性表示.
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为x=k(1,-2,3)T+(1,2,-1)T,k为任意常数.令矩阵B=(α1,α2,α3,b+α3),证明方程组Bx=α1-α2有无穷多组解
设四元非齐次线性方程组的系数矩阵的秩为3,已知η1,η2,η3是它的三个解向量,且η1=,η1+η1=,求该方程组的通解.
设y1=e-x,y2=2xe-x,y3=3ex是某三阶常系数齐次线性微分方程的解,试确定该微分方程的形式.
设b1=a1+a2,b2=a2+a3,b3=a3+a4,b4=a4+a1,证明向量组b1,b2,b3,b4线性相关.
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,试证在(0,1)内至少存在一点ξ,使
曲线y=y(x)可表示为x=t3-t,y=t4+t,t为参数,证明:g(t)=在t=0处取得极大值。
设f(x)在[0,+∞)上连续,且f(0)>0,设f(x)在[0,x]上的平均值等于f(0)与f(x)的几何平均数,求f(x),
位于上半平面的上凹曲线y=y(x)过点(0,2),在该点处的切线水平,曲线上任意一点(x,y)处的曲率与及1+y’2之积成反比,比例系数为,求y=y(x).
随机试题
福利国家的最初尝试起始于()
失笑散的功用是
喹诺酮类药物的抗菌机制是()。
患者上前牙龋充填后三天出现自发痛,不敢咬合。查:充填体,叩(++),松动I度,牙龈轻红肿,冷热测无反应,该患牙三天前处理中的问题最可能是
诊断自主性功能亢进性甲状腺腺瘤最佳的甲状腺检查是
监理工程师对施工图审核的重点是( )。
《危险性较大的分部分项工程安全管理办法》规定,施工单位应当在危险性较大的分部分项工程施工前编制专项方案。下述选项中属于专项方案施工安全保证措施的是()。
某企业收同货款25000元存入银行,记账凭证的记录为:“借:银行存款25800,贷:其他应收款25800”,并已登记入账。更正时需要做的会计分录包括()
城市社区与农村社区的主要区别。(中山大学2011年研)
根据婚姻法的明确规定,下列哪些人之间禁止结婚?()
最新回复
(
0
)