首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组 的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组 的通解,并说明理由.
已知线性方程组 的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组 的通解,并说明理由.
admin
2021-02-25
60
问题
已知线性方程组
的一个基础解系为(b
11
,b
12
,…,b
1,2n
)
T
,(b
21
,b
22
,…,b
2,2n
)
T
,…,(b
n1
,b
n2
,…,b
n,2n
)
T
.试写出线性方程组
的通解,并说明理由.
选项
答案
设方程组(Ⅰ)与(Ⅱ)的系数矩阵分别为A和B,则由(Ⅰ)的基础解系可知AB
T
=0,于是BA
T
=(AB
T
)
T
=O,所以A的n个行向量的转置也是方程组(Ⅱ)的n个解向量. 由于(b
11
,b
12
,…,b
1,2n
)
T
,(b
21
,b
22
,…,b
2,2n
)
T
,…,(b
n1
,b
n2
,…,b
n,2n
)
T
为方程组(Ⅰ)的基础解系,所以该向量组线性无关,故r(B)=n,从而方程组(Ⅱ)的基础解系解向量的个数为2n-n=n. 又由于方程组(Ⅰ)的未知数的个数为2n,基础解系解向量的个数为n,所以方程组(Ⅰ)的系数矩阵的秩r(A)=n,于是A的n个行向量的转置是线性无关的,从而构成方程组(Ⅱ)的一个基础解系,于是方程组(Ⅱ)的通解为 y=k
1
(b
11
,b
12
,…,b
1,2n
)
T
+k
2
(b
21
,b
22
,…,b
2,2n
)
T
+…+k
n
(b
n1
,b
n2
,…,b
n,2n
)
T
, 其中k
1
,k
2
,…,k
n
为任意常数.
解析
本题考查齐次线性方程组基础解系的概念和通解的结构以及方程组系数矩阵的秩与基础解系中解向量个数的关系.
转载请注明原文地址:https://kaotiyun.com/show/0a84777K
0
考研数学二
相关试题推荐
设f(x)为连续函数,试证明:若f(x)为奇函数,则f(x)的一切原函数均为偶函数;若f(x)为偶函数,则有且仅有一个原函数为奇函数.
已知矩阵A与B相似,其中。求a,b的值及矩阵P,使P—1AP=B。
设矩阵,B=P—1A*P,求B+2E的特征值与特征向量,其中A*为A的伴随矩阵,E为三阶单位矩阵。
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
若矩阵相似于对角矩阵A,试确定常数a的值;并求可逆矩阵P,使P-1AP=A.
设A=,若存在秩大于1的三阶矩阵B使得BA=0,则An=_______.
微分方程y〞+y=-2x的通解为_________.
设A,B是n阶可逆矩阵,且A~B,则①A-1~B-1;②AT~BT;③A*~B*;④AB~BA.其中正确的个数是()
设4阶矩阵A=(α1,α2,α3,α4),方程组Ax=β的通解为(1,2,2,1)T+c(1,一2,4,0)T,c任意.记B=(α3,α2,α1,β一α4).求方程组Bx=α1一α2的通解
设y1(x),y2(x)是微分方程yˊˊ+pyˊ+qy=0的解,则由y1(x),y2(x)能构成方程通解的充分条件是().
随机试题
犬下眼睑内翻矫正术时,应将分离的皮瓣进行()。
背景资料:陈村拦河闸,在拦河闸工程建设中发生如下事件:事件一:招标人对主体工程施工进行公开招标,招标人拟定的招标公告中有如下内容:(1)投标人须信誉佳,财务状况良好,类似工程经验丰富。(2)投标人必须具有××省颁发的
最基本最主要的一种账户分类方法是( )。
()明细账一般不采用多栏式。
上市公司的资产重组方式主要有()等类。
下列不属于德育特点的是()。
雷暴天气的形成要具备充足的水汽条件和剧烈的对流运动、下图表示重庆市年均雷暴天气日数空间分布。完成下列问题。重庆市年均雷暴天气日数较多,主要原因有()①日照强②地形复杂③台风多④河流多
简述间谍罪的概念和构成特征。
某家媒体公布了某市二十所高中的高考升学率,并按升学率的高低进行排序。专家指出,升学率并不能作为评价这些高中的教学水平的标准。以下哪项不能作为支持专家论断的论据?
Wedon’tseeorhearthem,buteverydaytheyquietlygoabouttheirwork--filteringandcleansingourriversandstreams.Andi
最新回复
(
0
)