首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项正确的是( )
设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项正确的是( )
admin
2021-02-25
51
问题
设α
1
,α
2
,…,α
s
均为n维列向量,A是m×n矩阵,下列选项正确的是( )
选项
A、若α
1
,α
2
,…,α
s
线性相关,则Aα
1
,Aα
2
,…,Aα
s
线性相关
B、若α
1
,α
2
,…,α
s
线性相关,则Aα
1
,Aα
2
,…,Aα
s
线性无关
C、若α
1
,α
2
,…,α
s
线性无关,则Aα
1
,Aα
2
,…,Aα
s
线性相关
D、若α
1
,α
2
,…,α
s
线性无关,则Aα
1
,Aα
2
,…,Aα
s
线性无关
答案
A
解析
本题考查矩阵的乘法和向量组线性相关性.可用定义分析:λ
1
α
1
+
2
α
2
+…+
s
α
s
=0中,若存在λ
1
,λ
2
,…,λ
s
是一组不全为零数时,向量组α
1
,α
2
,…,α
s
是线性相关的;若只有当λ
1
,λ
2
,…,λ
s
都为零数时,向量组α
1
,α
2
,…,α
s
是线性无关的.也可用向量组的秩分析:向量组线性相关的充分必要条件是其秩小于向量组中向量的个数.
若α
1
,α
2
,…,α
s
线性相关,则存在不全为零的数k
1
,k
2
,…,k
s
,使
k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0,
在等式的两端左乘矩阵A得
k
1
Aα
1
+k
2
Aα
2
+…+k
s
Aα
s
=A(k
1
α
1
+k
2
α
2
+…+k
s
α
s
)=A0=0
由于k
1
,k
2
,…,k
s
不全为零,故Aα
1
,Aα
2
,…,Aα
s
线性相关.所以A选项正确,B不正确.
设α
1
,α
2
,…,α
s
线性无关,若m=n,且A=E,则Aα
1
,Aα
2
,…,A
s
线性无关.所以C不正确.若A=O,则Aα
1
,
Aα
2
,…,Aα
s
线性相关.所以D不正确.故选A.
本题也可以用秩分析.由于(Aα
1
,Aα
2
,…,Aα
s
)=A(α
1
,α
2
,…,α
s
),所以
r(Aα
1
,Aα
2
,…,Aα
s
)=r[A(α
1
,α
2
,…,α
s
)]≤r(α
1
,α
2
,…,α
s
).
若α
1
,α
2
,…,α
s
线性相关,则r(α
1
,α
2
,…,α
s
)<s.于是r(Aα
1
,Aα
2
,…,Aα
s
)<s.故Aα
1
,Aα
2
,…,Aα
s
线性相关.
故选项(A)正确.
注:要确定结论正确,则要求在任意情况下结论都正确,取特殊的正确,则不能确定结论正确.要确定结论不正确,只需取一种特殊情况,结论不正确,即可否定.则
x
1
(α
1
+α
2
)+x
2
(α
2
+α
3
)+…+x
s
(α
s
+α
1
)=0,
即
(x
1
+x
s
)α
1
+(x
1
+x
2
)α
2
+…+(x
s-1
+x
s
)α
s
=0,
由于α
1
,α
2
,…,α
s
线性无关,所以
方程组的系数行列式为
当s为奇数时,D=2≠0,方程组只有零解,所以x
1
=0,x
2
=0,…,x
s
=0,此时向量组β
1
,β
2
,…,β
s
线性无关.当s为偶数时,D=0,方程组有非零解,即有不全为零的k
1
,k
2
,…,k
s
使得k
1
β
1
+k
2
β
2
+…+k
s
β
s
=0,故向量组β
1
,β
2
,…,β
s
线性相关.
转载请注明原文地址:https://kaotiyun.com/show/Di84777K
0
考研数学二
相关试题推荐
设直线y=kx与曲线y=所围平面图形为D1,它们与直线x=1围成平面图形为D2求此时的D1+D2.
求曲线y=+ln(1+eχ)的渐近线方程.
已知三元二次型XTAX经正交变换化为2y12一y22一y32,又知矩阵B满足矩阵方程其中α=[1,1,一1]T,A*为A的伴随矩阵,求二次型XTBX的表达式.
设曲线y=a+x-x3,其中a0时,该曲线在x轴下方与y轴、x轴所围成图形的面积和在X轴上方与X轴所围成图形的面积相等,求a.
已知某商品的生产成本C=C(x)随生产量x的增加而增加,其增长率为且生产量为零时,固定成本C(0)=C。≥0,求该商品的生产成本函数C(x).
(1)求函数f(x)=的表达式,x≥0;(2)讨论函数f(x)的连续性.
设二阶常系数线性微分方程y"+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
设a1,a2,a3是四元非齐次方程组Ax=b的三个解向量,且秩r(A)=3,a1=(1,2,3,4)T,a2+a3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
(2003年试题,九)有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面(如图1—6—1),容器的底面圆的半径为2m,根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以,mn2/min的速率均匀扩大(假设注入
如图,曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线l1与l2分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数f(x)具有三阶连续导数,计算定积分∫03(x2+x)f"’(x)dx.
随机试题
A.表皮样囊肿B.腱鞘囊肿C.皮脂腺囊肿D.蔓状血管榴E.脂肪瘤发生于皮下组织内、呈分叶状的是【】
Eatinginspaceisdifferentfromeatingonearth.Thefoodthatastronautscarrywiththemdoesnotlooklikethefoodyoueat.
非放射专业学生教学期间,有效剂量当量不得大于
A.急性胎儿窘迫B.轻度新生儿窒息C.慢性胎儿窘迫D.重度新生儿窒息E.新生儿产伤胎儿娩出后1分钟仅有心跳而无呼吸,Apgar评分0~3分,应考虑
下列哪些细胞表达高亲和力的FcεRⅠ
下列影响建设工程项目质量的环境因素中,属于劳动作业环境因素的有()。
甲公司2015年分别销售A、B产品1万件和2万件,销售单价分别为100元和50元。甲公司向购买者承诺在产品售后2年内免费提供保修服务,预计保修期内将发生的保修费在销售额的2%~8%之间(该区间内各金额发生的可能性相同)。2015年实际发生保修费1万元,20
HowtoapproachListeningTestPartThree•InthispartoftheListeningTestyoulistentoalongconversationorinterviewan
WritingPublicSpeeches1.Speechesthatinform■Informativespeeches:toshow,【T1】______andinform【T1】______■Pos
Oceanographyhasbeendefinedtheapplicationofall【S1】______sciencestothestudyofthesea.Beforethenine
最新回复
(
0
)