首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项正确的是( )
设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项正确的是( )
admin
2021-02-25
86
问题
设α
1
,α
2
,…,α
s
均为n维列向量,A是m×n矩阵,下列选项正确的是( )
选项
A、若α
1
,α
2
,…,α
s
线性相关,则Aα
1
,Aα
2
,…,Aα
s
线性相关
B、若α
1
,α
2
,…,α
s
线性相关,则Aα
1
,Aα
2
,…,Aα
s
线性无关
C、若α
1
,α
2
,…,α
s
线性无关,则Aα
1
,Aα
2
,…,Aα
s
线性相关
D、若α
1
,α
2
,…,α
s
线性无关,则Aα
1
,Aα
2
,…,Aα
s
线性无关
答案
A
解析
本题考查矩阵的乘法和向量组线性相关性.可用定义分析:λ
1
α
1
+
2
α
2
+…+
s
α
s
=0中,若存在λ
1
,λ
2
,…,λ
s
是一组不全为零数时,向量组α
1
,α
2
,…,α
s
是线性相关的;若只有当λ
1
,λ
2
,…,λ
s
都为零数时,向量组α
1
,α
2
,…,α
s
是线性无关的.也可用向量组的秩分析:向量组线性相关的充分必要条件是其秩小于向量组中向量的个数.
若α
1
,α
2
,…,α
s
线性相关,则存在不全为零的数k
1
,k
2
,…,k
s
,使
k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0,
在等式的两端左乘矩阵A得
k
1
Aα
1
+k
2
Aα
2
+…+k
s
Aα
s
=A(k
1
α
1
+k
2
α
2
+…+k
s
α
s
)=A0=0
由于k
1
,k
2
,…,k
s
不全为零,故Aα
1
,Aα
2
,…,Aα
s
线性相关.所以A选项正确,B不正确.
设α
1
,α
2
,…,α
s
线性无关,若m=n,且A=E,则Aα
1
,Aα
2
,…,A
s
线性无关.所以C不正确.若A=O,则Aα
1
,
Aα
2
,…,Aα
s
线性相关.所以D不正确.故选A.
本题也可以用秩分析.由于(Aα
1
,Aα
2
,…,Aα
s
)=A(α
1
,α
2
,…,α
s
),所以
r(Aα
1
,Aα
2
,…,Aα
s
)=r[A(α
1
,α
2
,…,α
s
)]≤r(α
1
,α
2
,…,α
s
).
若α
1
,α
2
,…,α
s
线性相关,则r(α
1
,α
2
,…,α
s
)<s.于是r(Aα
1
,Aα
2
,…,Aα
s
)<s.故Aα
1
,Aα
2
,…,Aα
s
线性相关.
故选项(A)正确.
注:要确定结论正确,则要求在任意情况下结论都正确,取特殊的正确,则不能确定结论正确.要确定结论不正确,只需取一种特殊情况,结论不正确,即可否定.则
x
1
(α
1
+α
2
)+x
2
(α
2
+α
3
)+…+x
s
(α
s
+α
1
)=0,
即
(x
1
+x
s
)α
1
+(x
1
+x
2
)α
2
+…+(x
s-1
+x
s
)α
s
=0,
由于α
1
,α
2
,…,α
s
线性无关,所以
方程组的系数行列式为
当s为奇数时,D=2≠0,方程组只有零解,所以x
1
=0,x
2
=0,…,x
s
=0,此时向量组β
1
,β
2
,…,β
s
线性无关.当s为偶数时,D=0,方程组有非零解,即有不全为零的k
1
,k
2
,…,k
s
使得k
1
β
1
+k
2
β
2
+…+k
s
β
s
=0,故向量组β
1
,β
2
,…,β
s
线性相关.
转载请注明原文地址:https://kaotiyun.com/show/Di84777K
0
考研数学二
相关试题推荐
已知三元二次型XTAX经正交变换化为2y12一y22一y32,又知矩阵B满足矩阵方程其中α=[1,1,一1]T,A*为A的伴随矩阵,求二次型XTBX的表达式.
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
若矩阵相似于对角矩阵A,试确定常数a的值;并求可逆矩阵P,使P-1AP=A.
设y=f(x)=(Ⅰ)讨论函数f(x)的奇偶性,单调性,极值;(Ⅱ)讨论曲线y=f(x)的凹凸性,拐点,渐近线,并根据以上(Ⅰ)、(Ⅱ)的讨论结果,画出函数y=f(x)的大致图形.
设函数y=f(x)由方程xy+2lnx=y4所确定,则曲线y=f(x)在点(1,1)处的切线方程是_________.
[2012年]求函数f(x,y)=x的极值.
已知曲线L的方程(1)讨论L的凹凸性;(2)过点(=1,0)引L的切线,求切点(x0,y0),并写出切线的方程;(3)求此切线与L(对应于x≤x0的部分)及x轴所围成的平面图形的面积.
设A为三阶实对称矩阵,α1=(a,-a,1)T是方程组AX=0的解,α2=(a,1,1-a)T是方程组(A+E)X=0的解,则a=_____
设f(x)在[0,1]上连续,在(0,1)内有f(x)>0恒成立且xf’(x)=f(x)+ax2。由曲线y=f(x)与直线x=1,y=0围成的平面图形的面积为2。(Ⅰ)求函数y=f(x)的解析式;(Ⅱ)a取何值时,此图形绕x轴旋转一周而
设当x→0时,(1一cosx)In(1+x2)是比xsinxn高阶的无穷小,而xsinxn是tt(ex2一1)高阶的无穷小,则正整数n等于()
随机试题
A.隐痛B.刺痛C.胀痛D.重痛E.掣痛湿邪所致的症状是()。
甲公司和乙公司组成联合体投标竞争丙公司的招标项目并且中标,则由()。
除会计师事务所外,从事代理记账业务的机构必须持有代理记账许可证书。该代理记账许可证书的核发机关是()。
对于注册资本与注册资金的关系,正确的是()
()具有保证劳动法体系全面实施的功能。
县级以上人民政府公安机关,经( )批准,对严重危害社会治安秩序的突发事件,可以根据情况实行现场管制。
一根电缆包括20根缆线,每种相同颜色的缆线有5根。如果在黑暗中,你至少要抓住()根缆线才能保证每种颜色都至少抓到了一根。
()对于编辑相当于()对于工人
Arecentstudy,whichwaspublishedinlastweek’sJournaloftheAmericanMedicalAssociation,offersapictureofhowriskyit
编写可行性报告时,(2)________分析是对项目的价值、投资与预期利益进行科学评价。
最新回复
(
0
)