首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知齐次线性方程组(Ⅰ)的基础解系为ξ1=[1,0,1,1]T,ξ2=[2,1,0,-1]T,ξ3=[0,2,1,-1]T,添加两个方程后组成齐次线性方程组(Ⅱ),求(Ⅱ)的基础解系.
已知齐次线性方程组(Ⅰ)的基础解系为ξ1=[1,0,1,1]T,ξ2=[2,1,0,-1]T,ξ3=[0,2,1,-1]T,添加两个方程后组成齐次线性方程组(Ⅱ),求(Ⅱ)的基础解系.
admin
2021-07-27
36
问题
已知齐次线性方程组(Ⅰ)的基础解系为ξ
1
=[1,0,1,1]
T
,ξ
2
=[2,1,0,-1]
T
,ξ
3
=[0,2,1,-1]
T
,添加两个方程
后组成齐次线性方程组(Ⅱ),求(Ⅱ)的基础解系.
选项
答案
方程组(Ⅰ)的通解为[*]其中k
1
,k
2
,k
3
是任意常数.代入添加的两个方程,得[*]得解η
1
=[2,-3,0]
T
,η
2
[0,1,-1]
T
,故方程组(Ⅱ)的基础解系为ξ
1
=2ξ
1
-3ξ
2
=[-4,-3,2,5]
T
,ξ
2
=ξ
2
-ξ
3
=[2,-1,-1,0]
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/7Ty4777K
0
考研数学二
相关试题推荐
设证明:A=E+B可逆,并求A-1.
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB对角线元素就是A和B对应对角线元素的乘积.(2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k,a22k,…,a33k;f(A)的对角线元素为f(
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t).(1)问当t为何值时,向量组α1,α2,α3线性无关?(2)问当t为何值时,向量组α1,α2,α3线性相关?(3)当α1,α2,α3线性相关时,将α3表示为α1和α2的线
设η1,η2,η3为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η1,η2,η3线性表示,并且r(A)=n-3,证明η1,η2,η3为AX=0的一个基础解系.
设A=(aij)为3阶非零实矩阵,且已知Aij=aij(其中Aij为aij的代数余子式),i,j=1,2,3.证明:A可逆,并求|A|与A-1.
设A是n阶矩阵,对于齐次线性方程组(I)Anx=0和(Ⅱ)An+1x=0,现有命题①(I)的解必是(Ⅱ)的解;②(Ⅱ)的解必是(I)的解;③(I)的解不一定是(Ⅱ)的解;④(Ⅱ)的解不一定是(I)的解.其中
设A是n阶矩阵,下列结论正确的是().
微分方程的通解是(其中C为任意常数)()
rf(r2)dr改为先y后χ的累次积分的形式为_______.
随机试题
地层流体最常见的是盐水,密度大约为1.07g/cm3,地层压力梯度大约为10.497kPa.m。()
A.CA50B.NSEC.CEAD.CA125E.CYFRA21-1最能反映小细胞肺癌肿瘤标志物是
6个月女婴,4月份入院,发热2天。体温38,0℃,咳嗽有痰,1天来惊厥4~5次,发作时两眼上窜,四肢抽动,持续1~2分钟,抽后神志清。体检:一般情况好,前囟2.5cm×2.5cm,平坦,枕骨按之有乒乓球感,双肺有中、小水泡音。
女性,46岁,左乳外上象限无痛性肿物3cm直径,与皮肤轻度粘连,左腋下触及2个可活动的淋巴结,诊断为“乳腺癌”。按TNM分期,应为
重大搁浅事故指造成停航()d以上。
建设项目竣工决算的作用不包括()。
企业在批量生产过程中,对供应商的质量控制重点包括()。
南社
下列哪一个选项不属于决定国家立法体制的主要因素()
要将名为MyForm的窗体显示出来,正确的使用方法是
最新回复
(
0
)