首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2一α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为( )
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2一α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为( )
admin
2019-08-12
50
问题
已知4阶方阵A=(α
1
,α
2
,α
3
,α
4
),α
1
,α
2
,α
3
,α
4
均为四维列向量,其中α
1
,α
2
线性无关,若α
1
+2α
2
一α
3
=β,α
1
+α
2
+α
3
+α
4
=β,2α
1
+3α
2
+α
3
+2α
4
=β,k
1
,k
2
为任意常数,那么Ax=β的通解为( )
选项
A、
B、
C、
D、
答案
B
解析
由α
1
+2α
2
一α
3
=β知
即γ
1
=(1,2,一1,0)
T
是Ax=β的解.同理γ
2
=(1,1,1,1)
T
,γ
3
=(2,3,1,2)
T
也均是Ax=β的解,那么η
1
=γ
1
一γ
2
=(0,1,一2,一1)
T
,η
2
=γ
3
一γ
2
=(1,2,0,1)
T
是导出组Ax=0的解,并且它们线性无关.于是Ax=0至少有两个线性无关的解向量,有n—r(A)≥2,即r(A)≤2,又因为α
1
,α
2
线性无关,有r(A)=r(α
1
,α
2
,α
3
,α
4
)≥2.所以必有r(A)=2,从而n—r(A)=2,因此η
1
,η
2
就是Ax=0的基础解系,根据解的结构,所以应选B.
转载请注明原文地址:https://kaotiyun.com/show/U0N4777K
0
考研数学二
相关试题推荐
计算其中D由直线x=一2,y=0,y=2以及曲线所围成.
已知三角形周长为2p,求出这样一个三角形,使它绕自己的一边旋转时体积最大.
(2005年)设α1,α2,α3均为3维列向量,记矩阵A=(α1,α2,α3),B=(α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3).如果|A|=1,那么|B|=_______.
(2017年)设为3阶矩阵.P=(α1,α2,α3)为可逆矩阵,使得P-1AP=,则A(α1+α2+α3)=
求极限
设f(x)在[a,b]上非负,在(a,b)内f"(x)>0,f’(x)<0.I3=(b-a)f(b),则I1,I2,I3的大小关系为()
设f(x1,x2,…,xn)=XTAX是正定二次型.证明:二次型平方项的系数均大于零;
计算其中D是由圆周x2+y2=4,x2+y2=1及直线y=0,y=x所围的位于第一象限的闭区域.
设z=z(x,y)是由x2一6xy+10y2一2yz—z2+18=0确定的函数,求z=z(x,y)的极值点和极值。
设函数z=z(x,y)由方程x2+y2+z2=xyf(z2)所确定,其中f是可微函数,计算并化成最简形式.
随机试题
下列享有行政规章制定权的主体是()。
多器官功能障碍综合征通常是指
躯体各部分空间位置感觉的形成,与下列哪些感觉传入有关
根管充填的目的是
太阳病,发汗未愈,风寒入里化热,身热不解,汗出而喘,舌苔薄白,脉滑数者,治疗应选用
在工程质量事故处理过程中,可能要进行必要的检测鉴定,可进行检测鉴定的单位是()。
按照公安部《关于在全国公安机关普遍实行警务公开制度的通知》要求,公安机关实行警务公开的内容主要有()。
税收是国家财政收入的重要来源,其特征是()。
在键入交换机命令时可使用缩写形式,在Switch#模式下,若键入con则表示()。
通常所说的32位计算机中的32是指【 】。
最新回复
(
0
)