首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α1,α2,α3,α5-α4的秩为4.
设向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α1,α2,α3,α5-α4的秩为4.
admin
2019-08-12
37
问题
设向量组(Ⅰ)α
1
,α
2
,α
3
;(Ⅱ)α
1
,α
2
,α
3
,α
4
;(Ⅲ)α
1
,α
2
,α
3
,α
5
,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α
1
,α
2
,α
3
,α
5
-α
4
的秩为4.
选项
答案
因为向量组(Ⅰ)的秩为3,所以α
1
,α
2
,α
3
线性无关,又因为向量组(Ⅱ)的秩也为3,所以向量α
4
可由向量组α
1
,α
2
,α
3
线性表示.因为向量组(Ⅲ)的秩为4,所以α
1
,α
2
,α
3
,α
5
线性无关,即向量α
5
不可由向量组α
1
,α
2
,α
3
线性表示,故向量α
5
-α
4
不可由α
1
,α
2
,α
3
线性表示,所以α
1
,α
2
,α
3
,α
5
-α
4
线性无关,于是向量组α
1
,α
2
,α
3
,α
5
-α
4
的秩为4.
解析
转载请注明原文地址:https://kaotiyun.com/show/2cN4777K
0
考研数学二
相关试题推荐
(2003年)设三阶方阵A、B满足A2B-A-B=E,其中E为三阶单位矩阵,A=,则|B|=______.
(2005年)设A为n(n≥2)阶可逆矩阵,交换A的第1行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则
(18)设实二次型f(x1,x2,x3)=(x1-x3+x3)2+(x2+x3)2+(x1+ax3)2,其中a是参数.(1)求f(x1,x2,x3)=0的解;(2)求f(x1,x2,x3)的规范形.
(05)已知3阶矩阵A的第一行是(a,b,c),a,b.c不全为零,矩阵B=(k为常数),且AB=O,求线性方程组Ax=0的通解.
设c1,c2,…,cn均为非零实常数,A=(aij)n×n为正定矩阵,令bij=aijcicj(i,j=1,2,…,n),矩阵B=(bij)n×n,证明矩阵B为正定矩阵.
求下列极限:
已知f(x)的一个原函数为cosx,g(x)的一个原函数为x2,下列函数哪些是复合函数f[g(x)]的原函数?(1)x1(2)cos2x(3)cos(x2)(4)cosx
设A=,已知A有三个线性无关的特征向量且λ=2为矩阵A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
求极限:其中a≠0.
已知α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,那么向量α1一α2,α1+2α2—2α3,(α2一α1),α1—3α2+2α3,中,对应齐次线性方程组Ax=0解向量的共有()
随机试题
中国特色社会主义政治发展道路,是近代以来中国人民长期奋斗的历史逻辑、理论逻辑、实践逻辑的必然结果,是坚持党的本质属性、践行党的根本宗旨的必然要求。走中国特色社会主义政治发展道路,必须坚持的中国特色社会主义政治制度有()。
构成标高分析活动的基本阶段是标高和()
A.水解B.氧化C.异构化D.聚合E.脱羧聚乙烯聚合度由2000反应生成聚合度为4000
(2009年)关于行政复议第三人,下列哪一选项是错误的?
由曲面及z=x2+y2所围成的立体体积的三次积分为()。
大批量采购水泥的供货合同,在交货检验的条款内应当约定( )等内容。
根据《企业破产法》的规定,债务人在出现破产事由时,可以向人民法院提出( )申请。
企业处于繁荣期,可以采取扩充厂房设备和提高产品价格的理财策略。()
()是社会主义民主政治的本质和核心。
Describetheproceduresofbanker’sacceptanceaccordingtothenumbersgiveninthefollowingcharter.
最新回复
(
0
)