首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2009年] 设y=y(x)是区间(一π,π)内过点(-π/√2,π/√2)的光滑曲线,当一π<x<0时,曲线上任一点处的法线都过原点,当0≤x<π时,函数y(x)满足y"+y+x=0,求函数y(x)的表达式.
[2009年] 设y=y(x)是区间(一π,π)内过点(-π/√2,π/√2)的光滑曲线,当一π<x<0时,曲线上任一点处的法线都过原点,当0≤x<π时,函数y(x)满足y"+y+x=0,求函数y(x)的表达式.
admin
2019-05-10
59
问题
[2009年] 设y=y(x)是区间(一π,π)内过点(-π/√2,π/√2)的光滑曲线,当一π<x<0时,曲线上任一点处的法线都过原点,当0≤x<π时,函数y(x)满足y"+y+x=0,求函数y(x)的表达式.
选项
答案
y(x)在两个区间(一π,0)与[0,π]上满足的条件不同,先分别求出y(x)在这两区间上满足的微分方程及其通解,再由y(x)在x=0处的连续性、可导性求出待定常数. (1)对(-π,0)上的曲线求出特解,先求出曲线的方程.由于曲线上任一点处的法线都过原点,曲线的法线为y=-x/y′,即ydy=一xdx,积分得曲线方程 y
2
=一x
2
+C. ① 又利用初始条件y(一π/√2)一π/√2求其特解.将其代入方程①得C=π
2
,从而有x
2
+y
2
=π
2
, 故y=[*](该分支由过点(一π/√2,π/√2)所确定). (2)再求区间(0,π)内曲线的分支,为此求出y"+y+x=0的特解.易知y"+y=0的通解为 y=C
1
cosx+C
2
sinax. 设 y"+y+x=0 ② 的特解为y
*
=ax+b,将其代入式②得到a=一1,b=0,故y
*
=-x,所以方程②的通解为 y=Y+y
*
=C
1
cosx+C
2
sinx一x. ③ (3)利用y(x)的光滑性,求出式③中的任意常数. 下面求③中的任意常数,由于y=y(x)在(一π,π)内光滑,故y在x=0处连续、可导.由其连续性有y
-
(0)=y
+
(0),故C
1
=π.又由可导性得y′
-
(0)=y′
+
(0),而y′
-
(0)=([*])′∣
x=0
=0,y′
+
(0)=(一C
1
sinx+C
2
cosx-1)∣
x=0
=C
2
—1, 故C
2
一1=0,即C
2
=1,于是y=y(x)的表达式为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/7VV4777K
0
考研数学二
相关试题推荐
求不定积分∫χ3dχ.
设f(χ)在区间[0,1]上可积,当0≤χ≤1时,|f(χ)-f(y)|≤|arctanχ-arctany|,又f(1)=0,证明:|∫01f(χ)dχ|≤ln2.
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又B=且AB=O,求方程组AX=0的通解.
将积f(χ,y)dχdy化成极坐标形式,其中D为χ2+y2=-8χ所围成的区域.
已知,求a,b的值.
微分方程y’+y=e-xxcosx满足条件y(0)=0的特解为__________。
设A=有三个线性无关的特征向量,则a=________
设产品的需求函数和供给函数分别为Qd=14-2P,Qs=-4+2P若厂商以供需一致来控制产量,政府对产品征收的税率为t,求:(1)t为何值时.征税收益最大,最大值是多少?(2)征税前后的均衡价格和均衡产量.
设有方程y’+P(x)y=x2,其中试求在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,1)和(1,+∞)内都满足方程,且满足初值条件y(0)=2.
随机试题
知情同意权最重要的伦理意义是
真核生物的mRNA多数在5′端有
连台手术更衣法换手术衣错误的是
安全生产费用按照()的原则进行管理。
公路工程施工组织设计的优化中,资源利用的优化主要包括()。
下面哪项收入应该征收企业所得税()。
在基金管理公司,()负责记录并保存每日投资交易情况的工作。
A、6B、7C、8D、10D每列前两个数字之积除以6等于第三个数字。6×6÷6=6,5×12÷6=(10),4×12÷6=8。
准确和无偏颇的数据是量化风险分析的基本要求。可以通过(49)来检查人们对风险的理解程度。
Whatisnotmentionedinthepassage?
最新回复
(
0
)