首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,α3为3维向量空间R3的一个基,令β1=2α1+2kα3,β2=2α2,β3=2α1+(k+1)α3. 当k为何值时,存在非零向量ξ在基α1,α2,α3与基β1,β2,β3下的坐标相同,并求出所有的ξ.
设向量组α1,α2,α3为3维向量空间R3的一个基,令β1=2α1+2kα3,β2=2α2,β3=2α1+(k+1)α3. 当k为何值时,存在非零向量ξ在基α1,α2,α3与基β1,β2,β3下的坐标相同,并求出所有的ξ.
admin
2021-02-25
36
问题
设向量组α
1
,α
2
,α
3
为3维向量空间R
3
的一个基,令β
1
=2α
1
+2kα
3
,β
2
=2α
2
,β
3
=2α
1
+(k+1)α
3
.
当k为何值时,存在非零向量ξ在基α
1
,α
2
,α
3
与基β
1
,β
2
,β
3
下的坐标相同,并求出所有的ξ.
选项
答案
设[*],则P为从基α
1
,α
2
,α
3
到基β
1
,β
2
,β
3
的过渡矩阵.又设ξ在基α
1
,α
2
,α
3
下的坐标为x=(x
1
,x
2
,x
3
)
T
,则ξ在基β
1
,β
2
,β
3
下的坐标为P
-1
x.由已知有x=P
-1
x,从而px=x.即(P-E)x=0. 又由于ξ≠0,所以其坐标向量x≠0,即齐次线性方程组(P-E)x=0应有非零解,于是[*],因此当k=0时,齐次线性方程组的非零解为[*],其中c为任意常数.从而ξ=-cα
1
+0α
2
+cα
3
,c为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/7Y84777K
0
考研数学二
相关试题推荐
设α为n维非零列向量,E为n阶单位阵,试证A=E—为正交矩阵。
设f(x)在[0,+∞)内可导且f(0)=1,f’(x)<f(x)(x>0).证明:f(x)<ex(x>0).
证明n维向量α1,α2……αn线性无关的充要条件是
设函数,数列{xn}满足lnxn+<1。证明xn存在,并求此极限。[img][/img]
已知三元二次型XTAX经正交变换化为2y12一y22一y32,又知矩阵B满足矩阵方程其中α=[1,1,一1]T,A*为A的伴随矩阵,求二次型XTBX的表达式.
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式,若|A|=一1.则它的每个元素等于自己的代数余子式乘一1.
设向量α1,α2,…,αn-1是n—1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…,αn-1均正交的n维非零列向量。证明:α1,α2,…,αn-1ξ线性无关。
设λ为可逆方阵A的特征值,且χ为对应的特征向量,证明:(1)λ≠0;(2)为A-1的特征值,且χ为对应的特征向量;(3)为A*的特征值,且χ为对应的特征向量.
设矩阵,B=P—1A*P,求B+2E的特征值与特征向量,其中A*为A的伴随矩阵,E为三阶单位矩阵。
随机试题
《春江花月夜》的主旨是()
健康教育行为诊断中,低可变性行为是指
A.必修内容B.选修内容C.自修内容D.继续教育内容按照《全国执业药师继续教育指导大纲》的要求,执业药师自行选定的与执业活动相关的内容属于()
工业与民用建筑扩初设计阶段监理工作的内容与工业交通项目( )质量控制的内容基本相同。
现金管理类理财产品的投资方向不包括()。
【2015河北省属】现代学校制度的价值追求包括()。
关于RC5加密技术的描述中,正确的是()。
若窗体Frml中有一个命令按钮Cmdl,则窗体和命令按钮的Click事件过程名分别为
Asurewaytogrowyourbusinessistogetpeopleexcitedaboutyourproductsorservices.Postcards,posters(海报),andbrochure
A、Stomachcancer.B、Skincancer.C、Lungcancer.D、Bloodcancer.A
最新回复
(
0
)