首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知f(x)在[1,3]上连续,在(1,3)内可导,且f(1)f(3)>0,f(1)f(2)<0,证明至少存在一点ξ∈(1,3),使得f′(ξ)一f(ξ)=0.
已知f(x)在[1,3]上连续,在(1,3)内可导,且f(1)f(3)>0,f(1)f(2)<0,证明至少存在一点ξ∈(1,3),使得f′(ξ)一f(ξ)=0.
admin
2021-01-30
30
问题
已知f(x)在[1,3]上连续,在(1,3)内可导,且f(1)f(3)>0,f(1)f(2)<0,证明至少存在一点ξ∈(1,3),使得f′(ξ)一f(ξ)=0.
选项
答案
由题设可知,f(1)与f(2)异号,f(2)与f(3)异号,因此由连续函数的零点定理可知,至少存在两点ξ
1
∈(1,2),ξ
2
∈(2,3),使得f(ξ
1
)=f(ξ
2
)=0.构造辅助函数 F(x)=e
-x
f(x), 则F(x)在[ξ
1
,ξ
2
]上连续,在(ξ
1
,ξ
2
)内可导,且F(ξ
1
)=F(ξ
2
)=0,因此由罗尔定理可知,至少存在一点ξ∈(ξ
1
,ξ
12
)[*](1,3),使得F′(ξ)=0.又因为 F′(x)=e
-x
f′(x)一e
-x
f(x)=e
-x
[f′(x)一f(x)], 因此有e
-ξ
[f′(ξ)一f(ξ)]=0,即f′(ξ)一f(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/7ex4777K
0
考研数学三
相关试题推荐
设y=y(x)(x>0)是微分方程2y’’+y’-y=(4-6x>e﹣x的一个解且(Ⅰ)求y(x),并求y=y(x)到x轴的最大距离;(Ⅱ)计算
设y=y(x)为微分方程y’’+4y’+4y=4e﹣2x的满足初始条件y(0)=1,y’(0)=0的特解,则
函数f(x)=cosx+xsinx在(一2π,2π)内的零点个数为
设曲线y=y(x)上任意一点的切线在y轴上的截距与法线在x轴上的截距之比为3,求y(x).
设随机变量X~N(0,1),Y~N(1,4)且相关系数ρXY=1,则().
设f(x)连续可导,且f(0)为f(x)的极值,则().
[2013年]设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记若α,β正交且均为单位向量,证明厂在正交变换下的标准形为2y12+y22.
[2005年]设为正定矩阵,其中A,B分别为m阶、n阶对称矩阵,C为m×n矩阵.利用上题的结果判断矩阵B=CTA-1C是否为正定矩阵,并证明你的结论.
设随机变量X1,X2,…,X12独立同分布且方差存在,则随机变量U=X1+X2+…+X7,V=X6+X7+…+X12的相关系数ρpv=____________.
曲线y=渐近线的条数是
随机试题
阅读曹禺《日出》中的一段台词,然后回答下列小题。你们好狠的心哪!你们给我一个月不过十三块来钱,可是你们左扣右扣的,一个月我实在领下的才十块二毛五。我为着这辛辛苦苦的十块二毛五,我整天地写,整天给你们伏在书桌上写;我抬不起头,喘不出一口气地写;我从早到
John_________hecouldimprovehisexamresults,buthedidnothaveenoughtimetostudy.
已知某企业2003年~2008年的产品产量统计资料(单位:万件):请结合下列选题,给出正确答案。
银行从业人员在进行客户财务分析时要对客户未来支出进行预测,必须考虑“基本生活”因素,即保证客户正常生活水平不变。()
Nottoomanydecadesago,itseemed"obvious"bothtothegeneralpublicandtosociologiststhatmodernsocietyhaschangedpeo
It’salongtimesinceIcametoseeyou.
SharksPerformaServiceforEarth’sWatersItishardtogetpeopletothinkofsharksasanythingbutadeadlyenemy.They
Whendidthewomanabsentthephysicsclasslastweek?
Thecompanydevisedan______approachtocompanysafetytrainingincompliancewithgovernmentsafetystandards.
Whatarethespeakersmainlydiscussing?
最新回复
(
0
)