首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
n维列向量组α1,…,αn-1线性无关,且与非零向量β正交.证明:α1,…,αn-1,β线性无关.
n维列向量组α1,…,αn-1线性无关,且与非零向量β正交.证明:α1,…,αn-1,β线性无关.
admin
2021-11-15
30
问题
n维列向量组α
1
,…,α
n-1
线性无关,且与非零向量β正交.证明:α
1
,…,α
n-1
,β线性无关.
选项
答案
令k
0
β+k
1
α
1
+…+k
n-1
α
n-1
=0,由α
1
,…,α
n-1
与非零向量β正交及(β,k
0
β+k
1
α
1
+…+k
n-1
α
n-1
)=0得k
0
(β,β)=0,因为β为非零向量,所以(β,β)=|β|
2
>0,于是k
0
=0,故k
1
α
1
+…+k
n-1
α
n-1
=0,由α
1
,…,α
n-1
线性无关得k
1
=k
n-1
=0,于是α
1
,…,α
n-1
,β线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/7ey4777K
0
考研数学二
相关试题推荐
=_________.
在t=0时,两只桶内各装10L的盐水,盐的浓度为15g/L,用管子以2L/min的速度将净水输入到第一只桶内,搅拌均匀后的混合液又由管子以2L/min的速度被输送到第二只桶内,再将混合液搅拌均匀,然后用1L/min的速度输出,求在任意时刻t>0,从第二只桶
设y(x)为微分方程y"-4y’+4y=0满足初始条件y(0)=1,y’(0)=2的特解,则=_________.
设函数f(x,y,z)一阶连续可偏导且满足f(tx,ty,tz)=tkf(x,y,z)。证明:.
证明线性方程组有解的充分必要条件是方程组是同解方程组。
设η为非零向量,,η为方程组AX=0的解,则a=______,方程组的通解为_______.
设A是m×s阶矩阵,B为s×n阶矩阵,则方程组BX=0与ABX=0同解的充分条件是()。
设,则a1,a2,a3,a4的一个极大线性无关组为______,其余的向量用极大线性无关组表示为_______.
设二维非零向量a不是二阶方阵A的特征向量。若A2a+Aa-6a=0,求A的特征值,讨论A是否可对角化。
已知y1*=e﹣2x+xe﹣x,y2*=2xe﹣2x+xe﹣x,y3*=e﹣2x+xe﹣x+2xe﹣2x是某二阶线性常系数微分方程y’’+py’+qy=f(x)的三个解。(Ⅰ)求这个方程和它的通解;(Ⅱ)设y=y(x)是该方程满足y(0)=0,y’(0
随机试题
车辆在高架道路上倒车时,驾驶员必须查明身后情况,确认安全后方准倒车。()
下列不是高钙血症常见原因的是
A.眼外直肌B.眼轮匝肌C.眼上斜肌D.眼下斜肌E.瞳孔括约肌眼睑的肌层内有
医院内的临床护理工作主要包括基础护理和
男,50岁,右耳垂下肿物5年,生长缓慢,无痛。检查肿物以耳垂为中心,界限清楚,活动,呈椭圆形,表面呈结节状,硬度中等。最可能的临床诊断是右侧腮腺
国有独资企业、国有独资公司、国有资本控股公司的董事、监事、高级管理人员违反规定,造成国有资产重大损失,被免职的。下列各项中,就其处罚的表述,正确的是()。
下列情形中,应当数罪并罚的有()。
以下关于网络入侵检测系统的组成结构的讨论中,哪个是错误的?——
Iwas______studyFrenchyesterday,butIchangedmymind.
WhichofthefollowingclausesexplainsRESULT?
最新回复
(
0
)