首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维随机变量(X,Y)的概率密度为 求:(Ⅰ)(X,Y)的边缘概率密度fx(χ),fY(y); (Ⅱ)Z=2X-Y的概率密度fZ(z).
设二维随机变量(X,Y)的概率密度为 求:(Ⅰ)(X,Y)的边缘概率密度fx(χ),fY(y); (Ⅱ)Z=2X-Y的概率密度fZ(z).
admin
2018-07-30
23
问题
设二维随机变量(X,Y)的概率密度为
求:(Ⅰ)(X,Y)的边缘概率密度f
x
(χ),f
Y
(y);
(Ⅱ)Z=2X-Y的概率密度f
Z
(z).
选项
答案
[*] (Ⅰ)f
X
(χ)=∫
-∞
+∞
f(χ,y)dy 当χ≤0或χ≥1时,fχ(χ)=0; 当0<χ<1时,f
X
(χ)=∫
0
2χ
dy=2χ,故 [*] f
Y
(y)=∫
-∞
+∞
f(χ,y)dχ 当y≤0或y≥2时,f
Y
(y)=0; 当0<y<2时,f
Y
(y)=[*],故 f
Y
(y)=[*] (积分的讨沦和定限可参考图(a)) (Ⅱ)Z的分布函数为: F
Z
(z)=P{Z≤z}=P{2X-Y≤z}=[*]f(χ,y)(χ,y)dχdy 当[*]≥1即z≥2时,F
Z
(z)=1,∴f
Z
(z)=F′
Z
(z)=0(参见图(b)): 当[*]<0即z<0时,F
Z
(z)=0,∴f
Z
(z)=F′
Z
(z)=0(参见图(c)); 当0≤[*]<1即0≤z<2时, F
Z
(z)=[*] f
Z
(z)=F′
Z
(z)=1-[*](参见图(d))故 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/7fg4777K
0
考研数学一
相关试题推荐
设S(x)=∫0x|cost|dt.(1)证明:当nπ≤x<(n+1)π时,2n≤S(x)<2(n+1);(2)求.
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22—2y32,且A*+2E的非零特征值对应的特征向量为α=,求此二次型.
设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=一ξ1+2ξ2+2ξ3,Aξ2=2ξ1—ξ2—ξ3,Aξ3=2ξ1—2ξ2—ξ3.(1)求矩阵A的全部特征值;(2)求|A*+2E|.
设(X,Y)的联合分布函数为F(x,y)=,则P{max(X,Y)>1}=___________.
设总体X的概率分布为θ(0<θ<)是未知参数.用样本值3,1,3,0,3,1,2,3求θ的矩估计值和最大似然估计值.
设A,B为三阶矩阵,且A~B,且λ1=1,λ2=2为A的两个特征值,|B|=2,求
设A=相似于对角阵.求:(1)a及可逆阵P,使得P-1AP=为对角阵;(2)A100.
已知事件A发生必导致B发生,且0<P(B)<1,则P(A|)=
随机试题
存款机构收妥存款资金入账,并向存款客户出具存单或进账单是()。
Isthatthemanyou______yesterday?
Hewastoldhecouldjointhearmywhenhe______oldenough.
最容易引起骨折不连接的移位是
设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是()。
大型机场一般长度为()m.宽度()m。
长江公司为母公司,2007年1月1日,长江公司用银行存款33000万元从证券市场上购入大海公司发行在外80%的股份并能够控制大海公司。同日,大海公司账面所有者权益为40000万元(与可变认净资产公允价值相等),其中:股本为30000万元,资本公积为200
“教育起源于儿童对成人无意识的模仿”出自于()。
学生中常见的焦虑反应是()焦虑。
RENEGADE:FEALTY::
最新回复
(
0
)