首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列一阶常系数线性差分方程的通解: (Ⅰ)4yt+1+16yt=20; (Ⅱ)2yt+1+10yt一5t=0; (Ⅲ)yt+1一2yt=2t; (Ⅳ)yt+1—yt=4cos
求下列一阶常系数线性差分方程的通解: (Ⅰ)4yt+1+16yt=20; (Ⅱ)2yt+1+10yt一5t=0; (Ⅲ)yt+1一2yt=2t; (Ⅳ)yt+1—yt=4cos
admin
2017-10-23
61
问题
求下列一阶常系数线性差分方程的通解:
(Ⅰ)4y
t+1
+16y
t
=20;
(Ⅱ)2y
t+1
+10y
t
一5t=0;
(Ⅲ)y
t+1
一2y
t
=2
t
;
(Ⅳ)y
t+1
—y
t
=4cos
选项
答案
(Ⅰ)方程可化简为y
t+1
+4y
t
=5.由于a=4,可得对应齐次方程的通解为C(一4)
t
,自由项f(t)=5是零次多项式,由于a+1≠0,应设非齐次方程的特解y
t
*
=B,B待定.代入方程可得B=1.于是,方程的通解为y
t
=1+C(一4)
t
. (Ⅱ)类似于(Ⅰ),可化简方程为y
t+1
+5y
t
=[*],对应齐次方程的通解为C(一5)
t
,非齐次方程的特解应具有形式y
t
*
=A+Bt,代入原方程可得A=一[*]。 于是,原方程的通解为y
t
=[*]+C(一5)
t
. (Ⅲ)由于a=一2,f(t)=2
t
,因此可设特解具有形式y
t
*
=At2
t
,代入方程可确定A=[*].显然对应齐次方程的通解为C2
t
,故原方程的通解为y
t
=(C+[*])2
t
. (Ⅳ)由于其特解应具有形式y
t
=B
0
cos[*],因此原方程的通解为y
t
=一2cos[*]t+C.
解析
转载请注明原文地址:https://kaotiyun.com/show/7oX4777K
0
考研数学三
相关试题推荐
设A是n阶矩阵,λ是A的特征值,其对应的特征向量为X,证明:λ2是A2的特征值,X为特征向量.若A2有特征值λ,其对应的特征向量为X,X是否一定为A的特征向量?说明理由.
设f(x)在[a,b]上连续且单调增加,证明:∫abxf(x)dx≥
设随机变量(X,Y)的联合密度函数为f(x,y)=(1)求P(X>2Y);(2)设Z=X+Y,求Z的概率密度函数.
设A为n阶非奇异矩阵,α是n维列向量,b为常数,P=(1)计算PQ;(2)证明PQ可逆的充分必要条件是αTA-1α≠b.
设P=,Q为三阶非零矩阵,且PQ=O,则().
设X1,…,X9为来自正态总体X~N(μ,σ2)的简单随机样本,令证明:Z~t(2).
微分方程的通解是________.
设生产某种产品必须投入两种要素,x1和x2分别为两要素的投入量,Q为产出量,如果生产函数为Q=2x1αx1β,其中α,β为正常数,且α+β=1.假设两种要素价格分别为p1,p2,试问产出量为12时,两要素各投入多少,可以使得投入总费用最小?
设当x→0时,etanx一ex与xn是同阶无穷小,则n为()
设随机变量X在区间(0,1)上服从均匀分布,当X取到x(0<x<1)时,随机变量Y等可能地在(x,1)上取值.试求:(I)(X,Y)的联合概率密度;(Ⅱ)关于Y的边缘概率密度函数;(Ⅲ)P{X+Y>1}.
随机试题
国有经济在国民经济中的主导作用主要表现在()
慢性肝淤血时肝脏可发生下列哪些病理改变
某女,71岁。无明显诱因突然昏仆,不省人事,半身不遂,目合口张,鼻鼾息微,遗尿,汗出,四肢厥冷,脉细弱。治疗应首选
为清除肠内毒物,最好在中毒后几小时进行洗胃
甲房地产开发公司(以下简称甲公司)将某市在建工程项目整体转让给乙房地产开发公司(以下简称乙公司)。乙公司利用在建工程(价值约为3000万元)作抵押,从B银行获得了一部分资金,在取得商品房预售许可证后,仅委托丙房地产经纪公司(以下简称丙公司)代理预(销)售
关于资产管理的特征,以下表述正确的是()。
因国有股行政划转或者变更、在同一实际控制人控制的不同主体之间转让股份、继承取得上市公司股份超过( )的,收购人可免于聘请财务顾问。
以下属于补偿性支出的有()。
二维码目前广泛应用于网络浏览、下载、在线视频、网上购物和支付等场景。下列关于二维码的说法,正确的是()。
下面不属于软件需求分析阶段工作的是
最新回复
(
0
)