首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m×n矩阵,且r(A)==r<n,其中 证明方程组AX=b有且仅有n-r+1个线性无关解;
设A为m×n矩阵,且r(A)==r<n,其中 证明方程组AX=b有且仅有n-r+1个线性无关解;
admin
2016-03-18
90
问题
设A为m×n矩阵,且r(A)=
=r<n,其中
证明方程组AX=b有且仅有n-r+1个线性无关解;
选项
答案
令ξ
1
,ξ
2
,…,ξ
n-r
为AX=0的基础解系,η
0
为Ax=b的特解,显然β
0
=η
0
, β
1
=ξ
1
+η
0
,…,β
n-r
=ξ
n-r
+η
0
为Ax=b的一组解,令k
0
β
0
+ k
1
β
1
+…+ k
n-r
β
n-r
=0,即 k
1
ξ
1
+ k
2
ξ
2
+…+ k
n-r
ξ
n-r
+ (k
0
+k
1
+…+ k
n-r
)η
0
=0 上式左乘A得(k
0
+k
1
+…+ k
n-r
)b=0,因为b≠0时,k
0
+k
1
+…+ k
n-r
=0,于是k
1
ξ
1
+ k
2
ξ
2
+…+ k
n-r
ξ
n-r
=0,因为ξ
1
,ξ
2
,…,ξ
n-r
为AX=0的基础解系,所以k
1
=k
2
=…=k
n-r
=0,于是k
0
=0,故β
0
,β
1
,…,β
n-r
线性无关 若γ
0
,γ
1
,…,γ
n-r+1
为AX=b的线性无关解,则ξ
1
=γ
1
-γ
0
,…,ξ
n-r+1
=γ
n-r+1
-γ
0
为AX=0的解,令k
1
ξ
1
+ k
2
ξ
2
+…+ k
n-r+1
ξ
n-r+1
,则 k
1
γ
1
+ k
2
γ
2
+…+ k
n-r+1
γ
n-r+1
l-(k
1
+k
2
+…+k
n-r+1
)γ
0
=0 因为γ
0
,γ
1
,…,γ
n-r+1
线性无关,所以k
1
=k
2
=…=k
n-r+1
=0,即ξ
1
,ξ
2
,…,ξ
n-r+1
为AX=0的线性无关解,矛盾,故方程组AX=b恰有n-r+1个线性无关解
解析
转载请注明原文地址:https://kaotiyun.com/show/7tw4777K
0
考研数学一
相关试题推荐
设z=z(x,y)满足,证明:=0.
设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,又此曲线上的点(0,1)处的切线方程为y=x+1,求该曲线方程,并求函数y(x)的极值。
设向量组α1,α2,…,αn-1为n维线性无关的列向量组,且与非零向量β1,β2正交,证明:β1,β2线性相关。
设函数f(r)当r>0时具有二阶连续导数,令则当x,y,z与t不全为零时
设A=(β-α1-2α2-3α3,α1,α2,α3),α1,α2,α3,β均是3维列向量,则方程组Ax=β有特解为________。
求微分方程xy=x2+y2满足条件y|x=e=2e的特解.
求由球面x2+y2+z2=1,x2+y2+z2=4z及锥面z=的上半部分所围的均质物体对位于坐标原点处的质量为m的质点的引力,设其密度μ为常数.
计算,其中Ω是由x2+y2+(z-1)2≤1.z≥1,y≥0确定.
设函数f(x)连续且恒大于零,其中Ω(t)={(x,y,z)丨x2+y2+z2≤t2},D(t)={(z,y)丨x2+y2≤t2}.证明当t>0时,F(t)>2/πG(t).
随机试题
变压器各主要参数是什么?
50kg体重的正常人的体液与血量分别为()
“系统的功能不是各个要素简单的叠加,而是大于各个个体的功效之和”描述的是系统的
A.手之阳经与手之阴经B.手之阳经与足之阳经C.手之阴经与足之阴经D.足之阳经与足之阴经E.手之阳经与足之阴经
有内在拟交感活性的B受体阻滞剂是
冰箱:肉类:蔬菜
开头部分加点的“它”所指代的是哪一项:“强子也有结构”,强子结构是由:
分组交换可以采用虚电路方式或(26)方式实现。虚电路方式在通信前需建立一条虚电路,其路径由(27)决定。每条虚电路都有虚电路号码,该号码(28)。虚电路建立后,各数据分组(29)到达目的地,然后(30)。
“先工作后判断”的循环程序结构中,循环体执行的次数最少是( )次。
在考生文件夹下,打开文档word1.docx,按照要求完成下列操作并以该文件名(word1.docx)保存文档。【文档开始】赵州桥在河北省赵县有一座世界闻名的石拱桥,叫赵州桥,又叫安济桥。它是隋朝的石匠李春设计并参加建造的,到现在已经有1300多年了
最新回复
(
0
)