首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m×n矩阵,且r(A)==r<n,其中 证明方程组AX=b有且仅有n-r+1个线性无关解;
设A为m×n矩阵,且r(A)==r<n,其中 证明方程组AX=b有且仅有n-r+1个线性无关解;
admin
2016-03-18
50
问题
设A为m×n矩阵,且r(A)=
=r<n,其中
证明方程组AX=b有且仅有n-r+1个线性无关解;
选项
答案
令ξ
1
,ξ
2
,…,ξ
n-r
为AX=0的基础解系,η
0
为Ax=b的特解,显然β
0
=η
0
, β
1
=ξ
1
+η
0
,…,β
n-r
=ξ
n-r
+η
0
为Ax=b的一组解,令k
0
β
0
+ k
1
β
1
+…+ k
n-r
β
n-r
=0,即 k
1
ξ
1
+ k
2
ξ
2
+…+ k
n-r
ξ
n-r
+ (k
0
+k
1
+…+ k
n-r
)η
0
=0 上式左乘A得(k
0
+k
1
+…+ k
n-r
)b=0,因为b≠0时,k
0
+k
1
+…+ k
n-r
=0,于是k
1
ξ
1
+ k
2
ξ
2
+…+ k
n-r
ξ
n-r
=0,因为ξ
1
,ξ
2
,…,ξ
n-r
为AX=0的基础解系,所以k
1
=k
2
=…=k
n-r
=0,于是k
0
=0,故β
0
,β
1
,…,β
n-r
线性无关 若γ
0
,γ
1
,…,γ
n-r+1
为AX=b的线性无关解,则ξ
1
=γ
1
-γ
0
,…,ξ
n-r+1
=γ
n-r+1
-γ
0
为AX=0的解,令k
1
ξ
1
+ k
2
ξ
2
+…+ k
n-r+1
ξ
n-r+1
,则 k
1
γ
1
+ k
2
γ
2
+…+ k
n-r+1
γ
n-r+1
l-(k
1
+k
2
+…+k
n-r+1
)γ
0
=0 因为γ
0
,γ
1
,…,γ
n-r+1
线性无关,所以k
1
=k
2
=…=k
n-r+1
=0,即ξ
1
,ξ
2
,…,ξ
n-r+1
为AX=0的线性无关解,矛盾,故方程组AX=b恰有n-r+1个线性无关解
解析
转载请注明原文地址:https://kaotiyun.com/show/7tw4777K
0
考研数学一
相关试题推荐
设A为n阶非奇异矩阵,α是n维列向量,b为常数,.计算PQ.
设f(u,v)一阶连续可偏导,f(tx,ty)=t3f(x,y),且f’1(1,2)=1,f’2(1,2)=4,则f(1,2)=________.
若α1,α2,α3是三维线性无关的列向量,A是三阶方阵,且Aα1=α1+α2,Aα2=α2+α3,Aα3=α3+α1,则|A|=________.
设,且|A|>0,且A*的特征值为-1,2,2,则a11+a22+a33=________.
一条曲线经过点(2,0),且在切点与y轴之间的切线长为2,求该曲线方程。
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数。将x=x(y)所满足的微分方程变换为y=y(x)所满足的微分方程。
微分方程y"-y=ex+1的一个特解应具有形式(式中a,b为常数)().
计算积分(ax+by+cz+e)2dS,其中∑为球面x2+y2+z2=R2.
由题设知,X1,X2,…,Xn独立同总体X的分布,所以Xi的密度函数为p(xi,λ),[*]
设(X1,X2,…,Xn)为取自正态总体X~N(μ,σT)的样本,则μ2+σ2的矩法估计量为
随机试题
A、宫颈刮片细胞学检查B、分段诊断性刮宫C、接触性出血D、最常见的妇科良性肿瘤E、绝经后阴道不规则出血宫颈癌的典型临床表现
下列各项中,不应当作为企业存货核算的有()。
根据企业破产法律制度的规定,下列各项中,人民法院应当裁定终止和解程序,并宣告债务人破产的情形有()。
已知:某企业上年营业收入净额为6900万元,全部资产平均余额为2760万元,流动资产平均余额为1104万元;本年营业收入净额为7938万元,全部资产平均余额为2940万元,流动资产平均余额为1323万元。要求:计算上年与本年的总资产周转率(次)、流动
阅读下面材料,回答问题。精神之树张栓固走过古柏掩映的神路,已感到无形的凉意扑面,世事的喧闹在思绪里一点点地远离。在神路的引导下,我们走向这向往已久的老祖宗的庭院,跨越过青石牌坊,走过石桥,我和人们一道虔诚地扑进了千年智者老人的怀抱,充分享受着那种心灵
教育部、国家语委发布的《国家语言文字事业“十三五”发展规划》,提出未来5年的发展目标,即到2020年()。
取保候审属于刑事司法工作中的( )。
资本主义国家选举的实质是
DearMr.Miller,Wereceivedyourletterrequestinghelpto【K4】______youraccesscodesothatyoucangainadmittancetoChenez’
AtleastsincetheIndustrialRevolution,genderroleshavebeeninastateoftransition.Asaresult,culturalscriptsaboutm
最新回复
(
0
)