首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题: ①若Ax=0的解均是Bx=0的解,则r(A)≥r(B); ②若r(A)≥r(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则r(A)=r(B); ④若r(
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题: ①若Ax=0的解均是Bx=0的解,则r(A)≥r(B); ②若r(A)≥r(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则r(A)=r(B); ④若r(
admin
2018-12-19
45
问题
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题:
①若Ax=0的解均是Bx=0的解,则r(A)≥r(B);
②若r(A)≥r(B),则Ax=0的解均是Bx=0的解;
③若Ax=0与Bx=0同解,则r(A)=r(B);
④若r(A)=r(B),则Ax=0与Bx=0同解。
以上命题中正确的有( )
选项
A、①②。
B、①③。
C、②④。
D、③④。
答案
B
解析
由于线性方程组Ax=0和Bx=0之间可以无任何关系,此时其系数矩阵的秩之间的任何关系都不会影响它们各自解的情况,所以②④显然不正确,利用排除法,可得正确选项为B。
下面证明①③正确。
对于①,由Ax=0的解均是Bx=0的解可知,方程组Bx=0含于Ax=0之中。从而Ax=0的有效方程的个数(即r(A))必不少于Bx=0的有效方程的个数(即r(B)),故r(A)≥r(B)。
对于③,由于A,B为同型矩阵,若Ax=0与Bx=0同解,则其基础解系包含的解向量的个数相同,即n—r(A)=n一r(B),从而r(A)=r(B)。故选B。
转载请注明原文地址:https://kaotiyun.com/show/C3j4777K
0
考研数学二
相关试题推荐
设对(1)中任意向量ξ2和ξ3,证明ξ1,ξ2,ξ3线性无关.
已知3阶矩阵A的特征值为1,2,一3,求|A*+3A+2E|.
已知n元齐次线性方程组A1x=0的解全是A2x=0的解,证明A2的行向量可以由A1的行向量线性表示.
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值f(a)=g(a),f(b)=g(b),证明存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ).
设奇函数f(x)在[一1,1]上具有二阶导数,且f(1)=1,证明:存在η∈(一1,1),使得f’’(η)+f’(η)=1.
如图3—8,C1和C2分别是和y=ex的图象,过点(0,1)的曲线C3是一单调增函数的图象.过C2上任一点M(x,y)分别作垂直于x轴和y轴的直线lx和ly记C1,C2与lx所围图形的面积为S1(x);C2,C3与ly所围图形的面积为S2(y).如果总有S
设D={(x,y)|x2+y2≤,x≥0,y≥0},[1+x2+y2]表示不超过1+x2+y2的最大整数.计算二重积分
已知函数z=f(x,y)的全微分dz=2xdx一2ydy,并且f(1,1)=2.求f(x,y)在椭圆域上的最大值和最小值.
设求y(n)(n>1).
设求f(x)的间断点并判定其类型.
随机试题
蛛网膜下腔出血最常见的原因是
某软件公司规模不断发展壮大,员工人数已从原来的20多人增加到现在的400多人,但管理层却发现公司的工作效率明显地下降了,相同类型的项目,过去5个人1个月可以完成,而现在10个人1个月都完成不了。由于绩效降低,员工人心涣散。[2005年真题]如果要改变这
广州圣心大教堂,始建于清同治二年(1863年),由法国普行善会建造,属法国哥特式建筑,高()米,是国内最大的哥特式教堂之一。
试分析达.芬奇的作品《蒙娜丽莎》。
A.RPI卡环B.回力卡环C.联合卡环D.对半卡环E.杆形卡环具有应力中断作用()。
Thenewprisonisdesignedparticularlyfor______.
WhatdoesthenewsitemsayaboutChristineLagarde?
PASSAGETHREEAccordingtothepassage,whatwillforgivenessleadto?
[A]advocates[B]approaching[C]constantly[D]decrease[E]enlarge[F]financial[G]fundamental[H]gracious[I]ignored[J]intention[K]just
A.inappropriateB.attendC.slipsD.trackE.financeF.unchangeableG.organize
最新回复
(
0
)