首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题: ①若Ax=0的解均是Bx=0的解,则r(A)≥r(B); ②若r(A)≥r(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则r(A)=r(B); ④若r(
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题: ①若Ax=0的解均是Bx=0的解,则r(A)≥r(B); ②若r(A)≥r(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则r(A)=r(B); ④若r(
admin
2018-12-19
51
问题
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题:
①若Ax=0的解均是Bx=0的解,则r(A)≥r(B);
②若r(A)≥r(B),则Ax=0的解均是Bx=0的解;
③若Ax=0与Bx=0同解,则r(A)=r(B);
④若r(A)=r(B),则Ax=0与Bx=0同解。
以上命题中正确的有( )
选项
A、①②。
B、①③。
C、②④。
D、③④。
答案
B
解析
由于线性方程组Ax=0和Bx=0之间可以无任何关系,此时其系数矩阵的秩之间的任何关系都不会影响它们各自解的情况,所以②④显然不正确,利用排除法,可得正确选项为B。
下面证明①③正确。
对于①,由Ax=0的解均是Bx=0的解可知,方程组Bx=0含于Ax=0之中。从而Ax=0的有效方程的个数(即r(A))必不少于Bx=0的有效方程的个数(即r(B)),故r(A)≥r(B)。
对于③,由于A,B为同型矩阵,若Ax=0与Bx=0同解,则其基础解系包含的解向量的个数相同,即n—r(A)=n一r(B),从而r(A)=r(B)。故选B。
转载请注明原文地址:https://kaotiyun.com/show/C3j4777K
0
考研数学二
相关试题推荐
已知3阶矩阵A的特征值为1,2,一3,求|A*+3A+2E|.
问λ取何值时,齐次线性方程组有非零解.
设矩阵A=(α1,α2,α3,α4),其中a2,a3,a4线性无关,a1=2a2一a3,向量b=a1+a2+a3+a4,求方程Ax=b的通解.
设证明:向量组α1,α2……αn与向量组β1β2……βn等价.
设A,B为同阶方阵,当A,B均为实对称矩阵时,证明(1)的逆命题成立.
曲线y=lnx上与直线x+y=1垂直的切线方程为__________.
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.问k为何值时f(x)在x=0处可导.
计算不定积分
(2010年)设m,n均是正整数,则反常积分的收敛性【】
(1994年)如图2.9所示,设曲线方程为y=χ2+,梯形OABC的面积为D,曲边梯形OABC的面积为D1,点A的坐标为(a,0),a>0,证明:
随机试题
患者,男性,58岁。因“渐发性双上肢震颤、活动不利3年”入院。患者3年前开始出现左上肢震颤,呈搓丸样,静止性为主,紧张、情绪激动时较明显,活动不灵活,表现为行动迟缓;2年前上述症状发展至右上肢,曾到当地医院就诊,考虑震颤查因,给予左旋多巴治疗,症状有所好转
引发口疮的主要原因是
A、重金属B、水溶性高分子C、细菌D、热原E、鞣质注射剂制备过程中,用乙醇处理一般是除去药液中的
中医学认为人体的中心是( )。
英国地理学家科恩曾把城市边缘区周期性的增长结构与()作比拟,以说明城市边缘区形态的动态变化过程。
为了扩大经营范围或经营规模的并购是指()。
喜克索斯人
A.条件(1)充分,但条件(2)不充分。B.条件(2)充分,但条件(1)不充分。C.条件(1)和(2)单独都不充分,但条件(1)和(2)联合起来充分。D.条件(1)充分,条件(2)也充分。E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联
Therehasarisenduringthistwentiethcentury(asitarosebefore,inageswhichweliketocalldark)apronouncedantiintell
RipVonWinkleisastoryadaptedby______fromGermanlegend.
最新回复
(
0
)