首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题: ①若Ax=0的解均是Bx=0的解,则r(A)≥r(B); ②若r(A)≥r(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则r(A)=r(B); ④若r(
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题: ①若Ax=0的解均是Bx=0的解,则r(A)≥r(B); ②若r(A)≥r(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则r(A)=r(B); ④若r(
admin
2018-12-19
71
问题
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题:
①若Ax=0的解均是Bx=0的解,则r(A)≥r(B);
②若r(A)≥r(B),则Ax=0的解均是Bx=0的解;
③若Ax=0与Bx=0同解,则r(A)=r(B);
④若r(A)=r(B),则Ax=0与Bx=0同解。
以上命题中正确的有( )
选项
A、①②。
B、①③。
C、②④。
D、③④。
答案
B
解析
由于线性方程组Ax=0和Bx=0之间可以无任何关系,此时其系数矩阵的秩之间的任何关系都不会影响它们各自解的情况,所以②④显然不正确,利用排除法,可得正确选项为B。
下面证明①③正确。
对于①,由Ax=0的解均是Bx=0的解可知,方程组Bx=0含于Ax=0之中。从而Ax=0的有效方程的个数(即r(A))必不少于Bx=0的有效方程的个数(即r(B)),故r(A)≥r(B)。
对于③,由于A,B为同型矩阵,若Ax=0与Bx=0同解,则其基础解系包含的解向量的个数相同,即n—r(A)=n一r(B),从而r(A)=r(B)。故选B。
转载请注明原文地址:https://kaotiyun.com/show/C3j4777K
0
考研数学二
相关试题推荐
设A,B是n阶矩阵,A有特征值λ=1,2,…,n.证明:对一般的n阶矩阵A,B,是否必有AB~BA?
设A2一3A+2E=O,证明:A的特征值只能取1或2.
曲线()
计算二重积分其中积分区域D是由y轴与曲线所围成.
设区域D由曲线=()
设函数y=y(x)由方程y=1一xey确定,则=___________.
设D是由曲线,直线x=a(a>0)及x轴所围成的平面图形,Vx,Vy分别是D绕x轴,y轴旋转一周所得旋转体的体积,若Vy=10Vx,求a的值.
(2015年)设D是第一象限中由曲线2χy=1,4χy=1与直线y=χ,y=χ围成的平面区域,函数f(χ,y)在D上连续,则(χ,y)dχdy=【】
(1998年)设y=f(χ)是区间[0,1]上任一非负连续函数.(1)试证存在χ0∈(0,1),使得在区间在区间[0,χ0]上以f(χ0)为高的矩形的面积等于在区间[χ0,1]上以y=f(χ)为曲面的曲边梯形的面积.(2)又设f(χ)在
设求y(n)(n>1).
随机试题
国际劳工组织的执行机构是()
英美法的主要渊源是()
下述哪些检查适用于不育症病人()
公司向股东和社会公众提供虚假的或者隐瞒重要事实的财务会计报告,严重损害股东或者其他人利益的,对其直接负责的主管人员或其他直接责任人员,应该( )。
班轮运输的运费应包括()。
(2016年)2015年3月4日,甲公司为履行与乙公司的货物买卖合同,签发一张商业汇票交付乙公司。汇票收款人为乙公司,由Q银行承兑,到期日为9月4日。7月9日,乙公司财务人员不慎将该汇票丢失,于当日同时申请挂失止付和公示催告。7月10日,法院通知Q银行停止
教育科学研究属于()
向级别与本机关相同的有关主管部门请求批准某事项应使用()。
患者,男性,23岁。发现右下颌骨逐渐膨大8年,近来增大速度减慢。检查见下颌骨体部弥散性膨大,但以颊侧更明显,质硬。X线片示右下颌骨体部呈磨砂玻璃样,与骨皮质相移行。术后标本病理检查发现纤维组织代替正常骨组织,其中有较多的纤细小梁。诊断为()。
冯.诺伊曼(VonNeumann)在总结ENIAC的研制过程和制定EDVAC计算机方案时,提出两点改进意见______。
最新回复
(
0
)