首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求使得不等式≤ln(x2+y2)≤A(x2+y2)在区域D={(x,y)|x>0,y>0}内成立的最小正数A与最大负数B.
求使得不等式≤ln(x2+y2)≤A(x2+y2)在区域D={(x,y)|x>0,y>0}内成立的最小正数A与最大负数B.
admin
2016-10-20
73
问题
求使得不等式
≤ln(x
2
+y
2
)≤A(x
2
+y
2
)在区域D={(x,y)|x>0,y>0}内成立的最小正数A与最大负数B.
选项
答案
在区域D={(x,y)|x>0,y>0}内 ln(x
2
+y
2
)≤A(x
2
+y
2
)[*] 因此使上式成立的常数4的最小值就是函数f(x,y)=[*]在区域D上的最大值.令r=x
2
+y
2
,则A的最小值就是函数F(r)=[*]在区间(0,+∞)内,的最大值.计算可得 [*] 因此使上式成立的常数B的最大值就是函数g(x,y)=xyln(x
2
+y
2
)在区域D上的最小值.计算可得 [*] 由此可知g(x,y)在D中有唯一驻点[*].因为在区域D的边界{(x,y)|x=0,y≥0}与{(x,y)|x≥0,y=0}上函数g(x,y)=0,而且当x
2
+y
2
≥1时g(x,y)≥0,从而[*] 就是g(x,y)在D内的最小值.即B的最大值是[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/80T4777K
0
考研数学三
相关试题推荐
设A是n×m矩阵,B是m×n矩阵,其中n
假设E,F是两个事件,(1)已知P(E)=0.4,P(F)=0.6,P(E∪F)=0.8,计算P(E|F)和P(F|E);(2)已知P(E)=0.3,P(F)=0.5,P(E|F)=0.4,计算P(E∩F),P(E∪F),P(F|E).
一袋中装有a个黑球,b个白球.先后两次从袋中各取一球(不放回).(1)已知第一次取出的是黑球,求第二次取出的仍是黑球的概率;(2)已知第二次取出的是黑球,求第一次取出的也是黑球的概率;(3)已知取出的两个球中有一个是黑球,求另
已知向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5.如果各向量组的秩分别为r(Ⅰ)=r(Ⅱ)=3,r(Ⅲ)=4,证明:向量组α1,α2,α3,α5-α4的秩为4.
求由下列曲线所围成的闭区域D的面积:(1)D是由直线ax+by=r1,ax+by=r2,cx+dy=s1,cx+dy=s2所围成的平行四边形闭区域,其中r1<r2,s1<s2,ad-bc≠0;(2)D是由曲线xy=4,xy3=4,xy=8,y3=15所
设a。+a1/2+…+an/n+1=0.证明:多项式f(x)=a。+a1x+…+anxn在(0,1)内至少有一个零点.
求二元函数z=f(x,y)=x2y(4-x-y)在直线x+y=6,x轴和y轴所围成的闭区域D上的最大值和最小值.
证明:在自变量的同一变化过程中,(1)若f(x)是无穷大,则1/f(x)是无穷小;(2)若f(x)是无穷小且f(x)≠0,则1/f(x)是无穷大。
随机试题
有关呼吸衰竭的概念哪一项不对?
根据2012年修改后的《民事诉讼法》规定,对污染环境、损害社会公共利益的行为,可以向人民法院提起诉讼的主体不包括【】
血浆置换时通常认为,置换1个血浆容量,血浆去除率为
患者,女性,48岁,8月初由外地来京探亲,因“发热、头痛5天,神志不清2天”于9月18日入院,经检查后确诊为流行性乙型脑炎。该患者确诊为流行性乙型脑炎的最主要依据是
具有敛肺平喘、收涩止带的药物是
哪些污染物可引起慢性阻塞性肺病
张某向英国某化工公司订购一批化工原料,该批原料通过海洋运输,计划三个月后到达天津港。但货物运输途中,张某前往德国参加展销会时,因为急于周转资金,而将货物又卖给法国商人托德。则关于运输途中该批货物物权变更的法律适用问题,根据我国相关法律的规定,下列哪些说法是
可撤销的合同,当事人必须从知道或者应当知道撤销事由之日起()内行使撤销权,并应当向人民法院或者仲裁机构申请。
“一个中心,两个基本点”之中,改革开放是()
在VisualFoxPro中,下面关于日期或时间的表达式中,错误的是( )。
最新回复
(
0
)