首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是一个n阶正定矩阵,B是一个n阶实的反对称矩阵,证明A+B可逆.
设A是一个n阶正定矩阵,B是一个n阶实的反对称矩阵,证明A+B可逆.
admin
2017-06-08
120
问题
设A是一个n阶正定矩阵,B是一个n阶实的反对称矩阵,证明A+B可逆.
选项
答案
证明(A+B)X=0没有非零解. 设n维实列向量α满足(A+B)α=0,要证明α=0. 注意B是反对称矩阵,α
T
Bα=0(因为α
T
Bα=(α
T
Bα)
T
=-α
T
Bα.) α
T
Aα=α
T
Aα+α
T
Bα=α
T
(A+B)α=0 由A的正定性得到α=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/80t4777K
0
考研数学二
相关试题推荐
设半径为R的球面S的球心在定球面x2+y2+z2=a2(a>0)上,问R取何值时,球面S在定球面内的面积最大?
[*]
[*]
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
某型号电子元件寿命(单位:h)服从分布N(160,202),随机抽四件,求其中没有一件寿命小于180h的概率.
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.求A的全部特征值;
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
已知二次型f(x1,x2,x3)=4x2-3x3+4x1x2-4x1x3+8x2x3.写出二次型f的矩阵表达式;
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
a为什么数时二次型x12+3x22+2x32+2ax2x3可用可逆线性变量替换化为2y12-3y22+5y32?
随机试题
震颤麻痹的主要病变部位在_______,舞蹈病的病变部位主要在_______。
TDDS
A.成釉器B.牙乳头C.牙囊D.牙蕾E.上皮根鞘
石菖蒲、远志的共同作用是
可以判断结晶纯度的方法有
下列项目中,属于冲销销售收入的是()。
A.outsidethecompanyB.bringfreshideasC.toemployD.appointingA.theyrarely【T13】______toapositionB.moredi
张教授指出,生物燃料是指利用生物资源生产的燃料乙醇或生物柴油,它们可以替代由石油制取的汽油和柴油,是可再生能源开发利用的重要方向。受世界石油资源短缺、环保和全球气候变化的影响,20世纪70年代以来,许多国家日益重视生物燃料的发展,并取得显著成效。所以,应该
设矩阵A=且A3=0.若矩阵X满足X-XA2-AX+AXA2=E,其中E为三阶单位矩阵,求X.
【B1】【B10】
最新回复
(
0
)