首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明可微的必要条件:设z=f(x,y)在点(x1,y0)处可微,则f’x(x0,y0)与f’y(x0,y0)都存在, 且dz|(x0,y0)=f’x(x0,y0)△x+f’y(x0,y0)△y。
证明可微的必要条件:设z=f(x,y)在点(x1,y0)处可微,则f’x(x0,y0)与f’y(x0,y0)都存在, 且dz|(x0,y0)=f’x(x0,y0)△x+f’y(x0,y0)△y。
admin
2018-12-19
93
问题
证明可微的必要条件:设z=f(x,y)在点(x
1
,y
0
)处可微,则f’
x
(x
0
,y
0
)与f’
y
(x
0
,y
0
)都存在,
且dz|
(x
0
,y
0
)
=f’
x
(x
0
,y
0
)△x+f’
y
(x
0
,y
0
)△y。
选项
答案
设z=f(x,y)在点(x
0
,y
0
)处可微,则等式△z=A△x+B△y+[*]成立。令△y=0,于是 [*] 令△x→0,有[*],同理,有[*],于是证明了f’
x
(x
0
,y
0
)与f’
y
(x
0
,y
0
)存在,并且 dz|
(x
0
,y
0
)
=f’
x
(x
0
,y
0
)△x+f’
y
(x
0
,y
0
)△y。
解析
转载请注明原文地址:https://kaotiyun.com/show/83j4777K
0
考研数学二
相关试题推荐
证明对称阵A为正定的充分必要条件是:存在可逆矩阵U,使A=UTU,即A与单位阵E合同.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.求矩阵A的特征值;
求下列齐次线性方程组的基础解系:(3)nx1+(n一1)x2+…+2xn-1+xn=0.
已知平面上三条不同直线的方程分别为l1:ax+26y+3c=0,l2:bx+2cy+3a=0,l3:cx+2ay+3b=0,试证这三条直线交于一点的充分必要条件为a+b+c=0.
已知3阶矩阵A的特征值为1,2,一3,求|A*+3A+2E|.
设当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
设方阵A满足A2一A一2层=0,证明A及A+2E都可逆,并求A一1及(A+2E)一1.
设函数f(x)在区间[0,1]上连续,且求∫01dx∫x1f(x)f(y)dy
(2012年)计算二重积χydσ,其中区域D由曲线r=1+cosθ(0≤θ≤π)与极轴围成.
(2005年)设区域D={(χ,y)|χ2+y2≤4,χ≥0,y≥0},f(χ)为D上的正值连续函数,a、b为常数,则
随机试题
住宅安全权也称住宅不受侵犯权,即任何公民居住、生活、休息的场所不受()
纤维蛋白降解产物的主要作用是
首次公开发行股票并在创业板上市的,持续督导期内保荐机构应当自发行人披露年度报告、中期报告之日起( )个工作日内在中国证监会指定网站披露跟踪报告。
下列固定资产可以计提折旧的是()。
(2020年节选)甲公司是一家在科创板上市的综合性医疗集团公司,2×18年和2×19年发生相关交易或事项如下:2×18年1月1日,甲公司向乙公司的股东按面值发行可转换公司债券60万份作为支付对价,收购乙公司100%股权。该债券面值为100元,期限为3年,票
李某,男,25岁,甲市乙乡人,在丙市某企业打工时与丁市城镇居民陈某结婚。两人此前均未生育,婚后不久陈某怀孕。根据《流动人口计划生育工作条例》,李某夫妇办理生育服务登记时,应当提供的证明材料包括()。
“因材施教"体现了人的身心发展的()。
下列关于发展的表述,与中国共产党第十八届中央委员会第五次全体会议中的相关说法,不相符的是()。
“小轩窗,正梳妆,相顾无言,唯有泪千行”,出自苏轼的哪首词?()
MadScientistStereotypeOutdatedDopeoplestillimagineaphysicistasabeardedmaninglassesorhastheimageofthema
最新回复
(
0
)