首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是m×n矩阵,其m个行向量是齐次线性方程组Cx=0的基础解系,B是m阶可逆矩阵,证明:BA的行向量也是齐次方程组Cx=0的基础解系.
已知A是m×n矩阵,其m个行向量是齐次线性方程组Cx=0的基础解系,B是m阶可逆矩阵,证明:BA的行向量也是齐次方程组Cx=0的基础解系.
admin
2016-03-05
98
问题
已知A是m×n矩阵,其m个行向量是齐次线性方程组Cx=0的基础解系,B是m阶可逆矩阵,证明:BA的行向量也是齐次方程组Cx=0的基础解系.
选项
答案
由已知可得A的行向量是C
x
=0的解,即CA
T
=O.则C(BA)
T
=CA
T
B
T
=OB
T
=0.可见BA的行向量是方程组Cx=0的解.由于A的行向量是基础解系,所以A的行向量线性无关,于是m=r(A)=n—r(C).又因为B是可逆矩阵,r(BA)=r(A)=m=n—r(C),所以鲋的行向量线性无关,其向量个数正好是n—r(C),因此是方程组Cx=0的基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/Ya34777K
0
考研数学二
相关试题推荐
设a1,a2,a3是四元非齐次线性方程组Ax=b的三个解向量,且r(A)=3,a1+a2=(2,0,-2,4)T,a1+a3=(3,1,0,5)T,则Ax=b的通解为________.
设A,B均是m×n矩阵,则方程组Ax=0与Bx=0同解的充分必要条件是()
设f(x)在[0,a](a>0)上可导,f(0)=0,f(a)=a2,且当x∈(0,a)时,f(x)≠ax,证明:存在一点ξ∈(0,a),使得f’(ξ)>a.
证明:∫aa+2πln(2+cosx)·cosxdx>0,其中a为任意常数.
已知f(x)在(-∞,+∞)内连续,且f[f(x)]=x,证明至少存在一点x0∈(-∞,+∞),使f(x0)=x0.
试求由直线x=1/2与抛物线y2=2x所围成的平面图形绕y=1旋转一周所得旋转体的体积和表面积.
设X为随机变量,E(X)=μ,D(X)=σ2,则对任意常数C有().
设A,B为三阶矩阵,A~B,λ1=-1,λ2=1为矩阵A的两个特征值,又|B-1|=则=________
计算,其中r=(x-x0)i+(y-y0)j+(z-z0)k,r=|r|,n是曲面∑的外法向量,点M0(x0,y0,z0)是定点,点M(x,y,z)是动点,研究以下两种情况:(1)点M0(x0,y0,z0)在的∑外部;(2)点M0(x0,y0,z0)在
随机试题
老井找窜时,应先进行()。
关于RNA聚合酶的叙述,不正确的是
具有降血糖作用的药物是
比较吉非替尼剂量疗效的临床试验是
附骨疽初起,用方为附骨疽成脓,用方为
根据《建设工程安全生产管理条例》,下列关于工程监理单位的安全责任的说法,不正确的是()。
A、B两公司都想借入3年期的500万美元借款,A公司想借入固定利率借款,B公司想借入浮动利率借款。因两家公司信用等级不同,市场向它们提供的利率也不同,具体情况见下表。根据以上资料,回答下列问题:两家公司可以选择的套利方案是()。
甲公司设立于2005年12月31日,预计2006年年底投产。假定目前的证券市场属于成熟市场,根据等级筹资理论的原理,甲公司在确定2006年筹资顺序时,应当优先考虑的筹资方式是( )。
饭店工作人员发现违法犯罪分子、形迹可疑的人员和被公安机关通缉的罪犯,未向当地公安机关报告,知情不报或隐瞒包庇的,公安机关可以酌情给予警告或者处以()以下罚款。
HereisaletterfromColoradoStateUniversitytoinformtheapplicantMr.LithathehasbeenadmittedtoCognitivePsychology
最新回复
(
0
)