首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是m×n矩阵,其m个行向量是齐次线性方程组Cx=0的基础解系,B是m阶可逆矩阵,证明:BA的行向量也是齐次方程组Cx=0的基础解系.
已知A是m×n矩阵,其m个行向量是齐次线性方程组Cx=0的基础解系,B是m阶可逆矩阵,证明:BA的行向量也是齐次方程组Cx=0的基础解系.
admin
2016-03-05
44
问题
已知A是m×n矩阵,其m个行向量是齐次线性方程组Cx=0的基础解系,B是m阶可逆矩阵,证明:BA的行向量也是齐次方程组Cx=0的基础解系.
选项
答案
由已知可得A的行向量是C
x
=0的解,即CA
T
=O.则C(BA)
T
=CA
T
B
T
=OB
T
=0.可见BA的行向量是方程组Cx=0的解.由于A的行向量是基础解系,所以A的行向量线性无关,于是m=r(A)=n—r(C).又因为B是可逆矩阵,r(BA)=r(A)=m=n—r(C),所以鲋的行向量线性无关,其向量个数正好是n—r(C),因此是方程组Cx=0的基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/Ya34777K
0
考研数学二
相关试题推荐
设3阶实对称矩阵A=(a1,a2,a3)有二重特征值λ1=λ2=2,且满足a1-2a3=(-3,0,6)T.求A;
设向量a=(1,1,-1)T是的一个特征向量.证明:A的任一特征向量都能由a线性表示.
设随机变量X与Y相互独立,X服从参数为λ(λ>0)的指数分布,Y的概率分布为P{Y=-1)=1/3,P{Y=1}=2/3,记Z=XY·求Z的概率密度fz(z).
设A,B均为4阶矩阵,它们的伴随矩阵分别为A*与B*,且r(A)=3,r(B)=4,则方程组A*B*x=0()
设X为随机变量,E(X)=μ,D(X)=σ2,则对任意常数C有().
设A,B为三阶矩阵,A~B,λ1=-1,λ2=1为矩阵A的两个特征值,又|B-1|=则=________
设向量组α1,α2,α3线性无关,β1不可由α1,α2,α3线性表示,而β2可由α1,α2,α3线性表示,则下列结论正确的是().
(Ⅰ)设n维向量α1,α2,α3,α4线性无关.βi=αi+tα4(i=1,2,3),证明:β1,β2,β3对任意t都线性无关;(Ⅱ)设n维向量α1,α2,α3,α4满足=0,βi=αi+iλiξ,i=1,2,3,4,问λi(i=1,2,3,4)
设函数y=y(x)由方程组所确定,试求t=0
A为四阶方阵,方程组AX=0的通解为x=k1(1,0,1,0)T+k2(0,0,0,1)T,A的伴随矩阵为A*,则秩(A*)*=().
随机试题
A.流行性乙型脑炎B.布鲁氏菌病C.猪繁殖与呼吸综合征D.猪瘟E.猪细小病毒病夏季,某母猪群发生流产,产死胎或木乃伊胎,公猪出现睾丸炎或睾丸一侧性肿大,分离的病原具有血凝特性。该病可能是
患者,男,38岁,右下颌下区胀痛2周,进食时加剧,继而减轻。体检时最可能发现的是
下列不是人为噪声的措施有()。
关于工程建设强制性国家标准的制定,下列说法正确的是()。
背景资料某施工单位承接了某二级公路E3标段(K15+000~K48+000)路基工程施工。由于该标段工程量较大,工期紧张,项目经理对工程质量管理与控制尤其重视,要求项目总工对质量控制负总责,对技术文件、报告、报表进行全面深入审核与分析,并采取测量、试验、
供应链物流调研属于()。
根据与学生的思维方式相符合的方式,尽可能早地将学科的基本结构置于课程的中心,随着学生年级增高和学习内容的拓展,使所学习的学科的基本结构不断拓展和加深。这种教材编排方式属于()。
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且f(0)=f(x)dx=f(2).证明存在ξ∈(0,2),使f"(ξ)=0.
一子弹穿透某铁板,已知入射子弹的速度为v0,穿出铁板时的速度为v1,以子弹入射铁板时为起始时间,又知穿透铁板的时间为t1.子弹在铁板内的阻力与速度平方成正比,比例系数k>0.(Ⅰ)求子弹在铁板内的运动速度v与时间t的函数关系v=v(t);
在Windows中,是根据()来建立应用程序与文件的关联。
最新回复
(
0
)