首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列齐次线性方程组的基础解系: (3)nx1+(n一1)x2+…+2xn-1+xn=0.
求下列齐次线性方程组的基础解系: (3)nx1+(n一1)x2+…+2xn-1+xn=0.
admin
2016-03-05
41
问题
求下列齐次线性方程组的基础解系:
(3)nx
1
+(n一1)x
2
+…+2x
n-1
+x
n
=0.
选项
答案
(1)方程组的系数矩阵[*]所以r(A)=2,因此基础解系所含向量的个数为4—2=2,又原方程组等价于[*]取x
3
=1,x
4
=5,得x
1
=一4,x
2
=2;取x
3
=0,x
4
=4,得x
1
=0,x
2
=1.因此基础解系为[*] (2)方程组系数矩阵[*]得r(A)=2,基础解系所含向量的个数为4—2=2.又原方程组等价于[*]取x
3
=1,x
4
=2得x
1
=0,x
2
=0;取x
3
=0,x
4
=19,得x
1
=1,x
2
=7.因此基础解系为[*] (3)记A=(n,n一1,…,1),可见r(A)=1,从而有n一1个线性无关的解构成此方程的基础解系,原方程组为x
s
=一nx
1
一(n一1)x
2
-…一2x
n-1
.取x
1
=1,x
2
=x
3
=…=x
x-1
=0,得x
n
=一n;取x
2
=1,x
1
=x
3
=x
4
=…=x
x-1
=0,得x
n
=一(n一1)=一n+1:……取x
n-1
=1,x
1
=x
2
=…=x
n-2
=0,得x
n
=一2.所以基础解系为[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Ka34777K
0
考研数学二
相关试题推荐
设随机变量X服从[0,2]上的均匀分布,Y服从参数为2的指数分布,且X与Y相互独立,令Z=X+Y,求EU和DU.
设不能相似于对角矩阵,则()
设f(x)在[0,1]上二阶可导,f(0)=0,且证明:存在一点ξ∈(0,1),使得f’>(ξ)=0;
设随机变量X与Y相互独立,X服从参数为λ(λ>0)的指数分布,Y的概率分布为P{Y=-1)=1/3,P{Y=1}=2/3,记Z=XY·X与Z是否相关?并说明理由.
设随机变量X与Y相互独立,X服从参数为λ(λ>0)的指数分布,Y的概率分布为P{Y=-1)=1/3,P{Y=1}=2/3,记Z=XY·求Z的概率密度fz(z).
设函数f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f”(x)|≤b,其中a,b为常数,证明:对任意0<x<1有|f’(x)|≤2a+.
n维向量α=1/2.0,…,0,1/2)T,A=E—4ααT,β=(1,1,…,I)T,则Aβ的长度为
设f(x)在x=0的某邻域内有定义,则g(x)=f(x)·|x|在x=0处可导的充要条件是()
设函数y=y(x)由方程组所确定,试求t=0
设有密度为u=1的均匀正方体V:0≤x≤a,0≤y≤a,0≤z≤a,设直线L过坐标原点且方向向量s的方向余弦为cosα,cosβ,cosγ,求V对L的转动惯量,并求当{cosα,cosβ,cosγ}满足什么条件时,此转动惯量有最大、最小值.
随机试题
阅读《谈时间》中的一段文字,回答下列小题:所以有人宁可遁迹山林,享受那清风明月,“侣鱼虾而友麋鹿”,过那高蹈隐逸的生活。诗人济慈宁愿长时间地守着一株花,看那花苞徐徐展瓣,以为那是人间至乐。嵇康在大树底下扬槌打铁,“浊酒一杯,弹琴一曲”;刘伶“止则操
解救有机磷中毒时不属于“阿托品化”指征的是
关于横向承重体系的特点,说法错误的是()。
场地大于1km2或重要工业区,宜建立相当于()导线精度的平面控制网。
会计人员经常对自己的工作进行评价,对工作中的不足进行评判、剖析,这种自我教育的方式属于()。
下列知识产权中没有对其进行最低保护要求的是()。
( )的投资对象主要是那些大盘蓝筹股、债券等收益比较稳定的有价证券。
A国居民甲获取B国的经营所得10万元,特许权使用费所得6万元;获取C国经营所得30万元,特许权使用费所得20万元。A、B、C三国所得税税率分别为50%、40%和60%,其特许权使用所得税税率分别为20%、10%和30%。在分国抵免法下,A国应对居民甲的
1995年颁布的________规定了我国中学德育的目标。
Thispassagemightbetakenfrom______.Whichdoyouthinkwouldbethebesttitleforthepassage?
最新回复
(
0
)