首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四元齐次线性方程组(1)为而已知另一四元齐次线性方程组(2)的一个基础解系为α1=(2,一1,a+2,1)T,α2=(一1,2,4,a+8)T. (I)求方程组(1)的一个基础解系; (Ⅱ)当a为何值时,方程组(1)与(2)有非零公共解?若有,求出所有非
设四元齐次线性方程组(1)为而已知另一四元齐次线性方程组(2)的一个基础解系为α1=(2,一1,a+2,1)T,α2=(一1,2,4,a+8)T. (I)求方程组(1)的一个基础解系; (Ⅱ)当a为何值时,方程组(1)与(2)有非零公共解?若有,求出所有非
admin
2016-03-05
38
问题
设四元齐次线性方程组(1)为
而已知另一四元齐次线性方程组(2)的一个基础解系为α
1
=(2,一1,a+2,1)
T
,α
2
=(一1,2,4,a+8)
T
.
(I)求方程组(1)的一个基础解系;
(Ⅱ)当a为何值时,方程组(1)与(2)有非零公共解?若有,求出所有非零公共解.
选项
答案
(I)对方程组(1)的系数矩阵作初等行变换,有[*]由于n—r(A)=4—2=2,基础解系由2个线性无关的解向量所构成,取x
3
,x
4
为自由变量,得β
1
=(5,一3,1,0)
T
,β
2
=(一3,2,0,1)
T
是方程组(1)的基础解系. (Ⅱ)设η是方程组(1)与(2)的非零公共解,则η=k
1
β
1
+k
2
β
2
=l
1
α
1
+l
2
α
2
,其中k
1
,k
2
与l
1
,l
2
均是不全为0的常数.由k
1
β
1
+k
2
β
2
一l
1
α
1
一l
2
α
2
=0,得齐次方程组(3)[*]对方程组(3)的系数矩阵作初等行变换,有[*]于是η=(l
1
+4l
2
)β
1
+(l
1
+7l
2
)β
2
=l
1
α
1
+l
2
α
2
.所以α=一1时,方程组(1)与(2)有非零公共解,且公共解是l
1
(2,一1,1,1)
T
+l
2
(一1,2,4,7)
T
,l
1
,l
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/8434777K
0
考研数学二
相关试题推荐
设某商品的销售量X是一个随机变量,X在(A,B)(b>A>0)内服从均匀分布,销售利润函数为当期望销售利润最大时,h=________.
=________.
已知二次型f(x1,x2,x3)=xTAx的负惯性指数q=2,r(A)=3,且A2-2A-3E=0,A为实对称矩阵,则二次型在正交变换x=Qy下的标准形为()
设y=f(x)在x≥0上有严格单调递增的连续导函数,且f(0)=0,它的反函数为x=g(y),证明:不等式∫0af(x)dx+∫0bdy≥ab.
A为四阶方阵,方程组AX=0的通解为x=k1(1,0,1,0)T+k2(0,0,0,1)T,A的伴随矩阵为A*,则秩(A*)*=().
设y1(x),y2(x)为二阶齐次线性微分方程y”+P(x)y’+q(x)y=0的两个特解,y1≠0,y2≠0,则y=c1y1(x)+c2y2(x)(其中c1,c2为任意常数)为该方程通解的充要条件为().
设有密度为u=1的均匀正方体V:0≤x≤a,0≤y≤a,0≤z≤a,设直线L过坐标原点且方向向量s的方向余弦为cosα,cosβ,cosγ,求V对L的转动惯量,并求当{cosα,cosβ,cosγ}满足什么条件时,此转动惯量有最大、最小值.
当x→0时,a(x)=kx2与是等价无穷小,则k=________。
设A,B为同阶可逆矩阵,则().
设已知线性方程组Ax=6存在2个不同的解。求λ.a;
随机试题
加入非竞争性拮抗药后,相应受体激动药的量效曲线将会
下列关于康普顿效应的叙述,正确的是
A、举元煎B、大补元煎C、保阴煎D、固阴煎E、失笑散治疗月经过多血热证,应首选
通常用()来度量地下水的含水层的径流强度。
执法人员当场作出行政处罚决定的,应当填写统一编号的《行政处罚(当场)决定书》,当场交付当事人并告知当事人,如不服行政处罚决定,可以依法()。
按照我国海关法的有关规定,要获得知识产权的海关保护,将其知识产权向海关总署备案申请,提交的备案申请书应包括以下内容______。耐克公司请求海关扣留该批货物时,应向海关提供______的担保。
下列关于预算的编制程序的说法中,不正确的有()。
左边是给定纸盒的外表面,下列哪一项能由它折叠而成?
社会意识的相对独立性表现为()
Psychiatrists(精神病专家)whoworkwitholderparentssaythatmaturitycanbeanassetinchildrearing—olderparentsaremorethou
最新回复
(
0
)