首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)在x≥0上有严格单调递增的连续导函数,且f(0)=0,它的反函数为x=g(y),证明:不等式∫0af(x)dx+∫0bdy≥ab.
设y=f(x)在x≥0上有严格单调递增的连续导函数,且f(0)=0,它的反函数为x=g(y),证明:不等式∫0af(x)dx+∫0bdy≥ab.
admin
2022-06-04
97
问题
设y=f(x)在x≥0上有严格单调递增的连续导函数,且f(0)=0,它的反函数为x=g(y),证明:不等式∫
0
a
f(x)dx+∫
0
b
dy≥ab.
选项
答案
因y=f(x)在x≥0上严格单调递增,故f(x)>f(0)=0,且反函数x=g(y)也单调增加,且g(0)=0,g(x)>g(0)=0,显然f[g(y)]=y,g[f(x)]=x. 若g(B)≥a,则利用定积分的 可积性与不等式性质,有 ∫
0
a
f(x)dx+∫
0
b
g(y)dy=∫
0
a
f(x)dx+∫
0
g(B)
g[f(x)]d[f(x)] =∫
0
a
f(x)dx+∫
0
a
xd[f(x)]+∫
a
g(B)
xd[f(x)] =∫
0
a
[xf(x)]’dx+∫
a
g(B)
xd[f(x)] ≥af(A)+∫
a
g(B)
ad[f(x)]=af(A)+a[f(g(B)])-f(A)]=ab
解析
转载请注明原文地址:https://kaotiyun.com/show/gTR4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 B
已知函数f(x,y)满足=0,则下列结论中不正确的是()
设随机变量X在区间(0,1)上服从均匀分布,在X=x(0
设f(x)在[0,1]上连续,且满足f(0)=1,f’(x)=f(x)+ax—a,求f(x),并求a的值,使曲线y=f(x)与x=0,y=0,x=1所围平面图形绕x轴旋转一周所得体积最小.
设n维列向量α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,向量β2不可由α1,α2,α3线性表示,则对任意常数k,必有().
设A是n阶正定矩阵,证明:|E+A|>1.
设A是n阶矩阵,λ是A的特征值,其对应的特征向量为X,证明:λ2是A2的特征值,X为特征向量.若A2有特征值λ,其对应的特征向量为X,X是否一定为A的特征向量?说明理由.
设是连续函数,求a,b的值.
求下列极限:
设z=f[cos(x2+y2)一1,ln(1+x2+y2)],其中f有连续的一阶偏导数,则
随机试题
下列除哪项外均是滑石的主治病证()
地震现场,一工人左腰及下肢被倒塌之砖墙压住,震后6小时救出,4小时送抵医院。诉口渴,尿少,呈暗红色。检查:脉搏120次/min,血压95/70mmHg,左下肢明显肿胀,皮肤有散在淤血斑及水疱,足背动脉搏动较健侧弱,趾端凉,无骨折征
耕地占用税以县级行政区域为单位,人均耕地不超过1亩的地区,每平方米征收()元。
2003年1月,甲、乙、丙共同设立一合伙企业。合伙协议约定:甲以现金人民币5万元出资,乙以房屋作价人民币8万元出资,丙以劳务作价人民币4万元出资;各合伙人按相同比例分配盈利、分担亏损。合伙企业成立后,为扩大经营,于2003年6月向银行贷款人民币5万元,期限
劳务派遣单位的出现是()的必然结果。
俄国画家康定斯基的著作《论艺术中的精神》和《点线面》,奠定了__________的理论基础。另一俄国画家__________创建的至上主义,属于几何抽:象的范畴。奠定了几何抽象主义理论基础和在艺术实践上有重要贡献的是荷兰画家__________创建的”__
结合吉林省实际谈如何解放思想。
运用问答法确定学生是否理解所学知识时,教师要求学生回答问题应()。
在批评心理学中,人们把批评的内容夹在两个表扬之中从而使受批评者愉快地接受批评的现象,称之为三明治效应。根据以上定义,下列做法运用了三明治效应的是()。
在Windows命令行窗口中,运行(65)命令后得到如下图所示的结果,该命令通常用以(66)。
最新回复
(
0
)