首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(99年)假设二维随机变量(X,Y)在矩形G={(χ,y)|0≤χ≤2,0≤y≤1}上服从均匀分布,记 (1)求U和V的联合分布; (2)求U和V的相关系数r.
(99年)假设二维随机变量(X,Y)在矩形G={(χ,y)|0≤χ≤2,0≤y≤1}上服从均匀分布,记 (1)求U和V的联合分布; (2)求U和V的相关系数r.
admin
2021-01-25
124
问题
(99年)假设二维随机变量(X,Y)在矩形G={(χ,y)|0≤χ≤2,0≤y≤1}上服从均匀分布,记
(1)求U和V的联合分布;
(2)求U和V的相关系数r.
选项
答案
G的面积为S
G
=2.如图4.7分得G=D
1
∪D
2
∪D
3
其中,D
1
的面积:[*]; D
3
的面积:[*]×2×1=1; D
2
的面积:[*] [*] 由题意,(X,Y)的概率密度为: [*] 而(U,V)可能取的值为(0,0),(0,1),(1,0),(1,1). 于是(1)P(U=0,V=0)=P(X≤Y,X≤2Y)=[*]f(χ,y)dχdy =[*] P(U=0,V=1)=P(X≤Y,X>2y)=[*]f(χ,y)dχdy=0 P(U=1,V=0)=P(X>Y,X≤2Y)=[*] P(U=1,V=1)=P(X>Y,X>2y)=[*] 于是写出(U,Y)的分布列如下: [*] ∴DU=E(U
2
)-(EU)
2
=[*] DV=E(V
2
)-(EV)
2
=[*] E(U.V)=0×0×[*]+0×1×0+1×0×[*]+1×1×[*] 得(U,V)的相关系数为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/85x4777K
0
考研数学三
相关试题推荐
求线性方程组的通解,并求满足条件的所有解.
设且f(x)处处可导,求f[g(x)]的导数.
在△ABC中任取一点P,而△ABC与△ABP的面积分别记为S与S1。若已知S1=12,求ES1。
证明:∫01dx∫01(xy)xydy=∫01xxdx.
[2006年]设随机变量X的概率密度为令Y=X2,F(x,y)为二维随机变量(X,Y)的分布函数.求:F(-1/2,4).
(2014年)设平面区域D=((x,y)|1≤x2+y2≤4,x≥0,y≥0},计算
(89年)假设函数f(χ)在[a,b]上连续.在(a,b)内可导,且f′(χ)≤0.记F(χ)=证明在(a,b)内F′(χ)≤0.
已知反常积分=______.
[2008年]设n元线性方程组AX=b,其中当a为何值时,该方程组有唯一解,并求x1;
[2004年]设有以下命题:则以上命题中正确的是().
随机试题
现场干预试验必须具备哪些基本要素
蟾酥的性状特征有()
控释膜保护膜
“应收票据”项目应根据“应收票据”科目的期末余额填列。()
以下不属于个别督导的技巧是()。
试论缔约过失责任。
吉尼斯世界纪录和趣味有关,也和无聊有关。27个法国人用牙签搭建了微型的埃菲尔铁塔,一个美国人收集了600余双匡威运动鞋,一个古巴人做出了世界上最长的雪茄。吉尼斯就是无聊大观园,没有想不到,也不存在做不到。但太无聊的纪录连吉尼斯也会望而生畏,有人注册了互联网
材料1建设社会主义现代化国家、实现中华民族伟大复兴,是我们党孜孜以求的宏伟目标。自成立以来,我们党就团结带领人民为此进行不懈奋斗。随着改革开放逐步深化,我们党对制度建设的认识越来越深入。1980年,邓小平同志在总结“文化大革命”的教训时就指出:“
办事员小李需要整理一份有关高新技术企业的政策文件呈送给总经理查阅。参照“示例1.jpg”“示例2.jpg”,利用考生文件夹下提供的相关素材,按下列要求帮助小李完成文档的编排:在标题段落“附件1:国家重点支持的高新技术领域”的下方插入以图标方式显示的文档
【B1】【B12】
最新回复
(
0
)