首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
假设随机变量X在区间[-1,2]上服从均匀分布,随机变量则方差D(Y)=__________.
假设随机变量X在区间[-1,2]上服从均匀分布,随机变量则方差D(Y)=__________.
admin
2019-05-08
114
问题
假设随机变量X在区间[-1,2]上服从均匀分布,随机变量
则方差D(Y)=__________.
选项
答案
8/9
解析
解一 为求E(Y),E(Y
2
),先利用命题3.2.3.2(3)求出P(Y=1)P(Y=-1).设X的密度为f
X
(x),则
P(Y=1)=P(X>0)=P(0
P(Y=-1)=P(X<0)=P(-1
因X为连续型随机变量,故P(X=0)=0,因而P(Y=0)=P(X=0)=0.于是得到Y和Y
2
的分布律分别为
故 E(Y)=(-1)×(1/3)+1×(2/3)=1/3, E(Y
2
)=0+1×1=1,
D(Y)=E(Y
2
)-[E(Y)]
2
=1-(1/3)
2
=8/9.
解二 由题设有
则
而P(X=0)=0,
故 E(Y)=1P(X=1)+0P(Y=0)+(-1)P(Y=-1)
=1P(X>0)+0P(X=0)+(-1)P(X<0)=2/3-1/3=1/3,
E(Y
2
)=1
2
P(Y=1)+0
2
P(Y=0)+(-1)
2
P(Y=-1)
=1
2
P(X>0)+0
2
P(X=0)+(-1)
2
P(X<0)=2/3+1/3=1.
故 D(Y)=E(Y
2
)-[E(Y)]
2
=1-(1/3)
2
=8/9.
解三 用随机变量方差的定义:
求之.
D(Y)=[1-E(Y)]
2
P(Y-1)+[0-E(Y)]
2
P(Y=0)+[-1-E(Y)]
2
P(Y=-1)
=[1-E(Y)]
2
P(X>0)+[E(Y)]
2
P(X=0)+[-1-E(Y)]
2
P(X<0)
=(4/9)×(2/3)+(1/9)×0+(16/9)×(1/3)=8/9.
注:命题3.2.3.2 (3)若X在区间[a,b]上服从均匀分布,即X~U[a,b],则X落在子区间[c,d]
[a,b]上的概率为
P(c≤X≤d)=(d-c)/(b-a).
转载请注明原文地址:https://kaotiyun.com/show/8oJ4777K
0
考研数学三
相关试题推荐
求微分方程x2y’+xy=y2满足初始条件y(1)=1的特解.
两台同样的自动记录仪,每台无故障工作的时间服从参数为5的指数分布。首先开动其中一台,当其发生故障时停用,而另一台自行开动,试求两台记录仪无故障工作的总时间T的概率密度。
设f(x)在[a,+∞)上连续,f(x)<0,而f(x)存在且大于零.证明:f(x)在(a,+∞)内至少有一个零点.
设随机变量X,Y相互独立,且又设向量组α1,α2,α3线性无关,求α1+α2,α2+Xα3,Yα1线性相关的概率.
交换积分次序并计算∫0adx∫0xdy(a>0).
设A为n阶矩阵,若Ak+1≠0,而Akα=0.证明:向量组α,Aα,…,Ak-1α线性无关.
设三阶矩阵A的特征值为λ1=-1,λ2=,λ3=其对应的特征向量为α1,α2,α3,令P=(2α3,-3α1,-α2),则P-1(A-1+2E)P=______.
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.(1)将x=x(y)所满足的微分方程=0变换为y=y(x)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
I(x)=du在区间[-1,1]上的最大值为______.
求由方程2x2+2y2+z2+8xz一z+8=0所确定的函数z(x,y)的极值,并指出是极大值还是极小值.
随机试题
Cultureshockisanoccupationaldisease(职业病)forpeoplewhohavebeensuddenlytransplantedabroad.Cultureshockiscaus
阅读《再别康桥》中的一段文字,并回答下列小题:悄悄的我走了,正如我悄悄的来;我挥一挥衣袖,不带走一片云彩。《再别康桥》最后一节诗与第一节略有重复,主要表现了诗人什么样的思想感情?
健康素养是维持和促进健康的一种
洋地黄中毒常见的心律失常有
根据技术分析理论,葛兰威尔法则可以用来判断是否出现( )。
“十个手指有长短”这句话表明,在学生发展过程中存在()。
()可以依法对公民的通信内容进行检查。
设D={(x,y)|x2+y2≥1,(x—1)2+y2≤1},求。
•Readtheadvertisementbelow.•ChoosethebestwordorphrasetofilleachgapfromA,B,C,orDontheoppositepage.•Forea
Customhasnotbeencommonlyregardedasasubjectofanygreatmoment.Theinnerworkingsofourownbrainswefeeltobeuniqu
最新回复
(
0
)