已知函数f(x)在区间[α,+∞)上具有2阶导数,f(a)=0,f’(x)>0,f"(x)>0.设b>a,曲线y=f(x)在点(b,f(b))处的切线与x轴的交点是(x0,0),证明a<x0<b.

admin2017-04-24  30

问题 已知函数f(x)在区间[α,+∞)上具有2阶导数,f(a)=0,f’(x)>0,f"(x)>0.设b>a,曲线y=f(x)在点(b,f(b))处的切线与x轴的交点是(x0,0),证明a<x0<b.

选项

答案曲线y=f(x)在点(b,f(b))处的切线方程为 y一f(b)=f’(b)(x一b) 该切线与x轴交点处的x坐标为x0=[*] 由于f’(x)>0,则f’(b)>0,f(x)单增,f(b)>f(a)>0,则 x0=b一[*]<b 欲证x0>a,等价于证明b一[*]>a,又f’(b)>0,则等价于证明 f’(b)(b一a)>f(b) 事实上f(b)=f(b) 一 f(a)=f’(ξ)(b一a) a<ξ<b 由于f"(x)>0,则f’(x)单调增,从而f’(ξ)<f’(b),则 f(b)=f(ξ)(b一a)<f’(b)(b一a) 原题得证.

解析
转载请注明原文地址:https://kaotiyun.com/show/88t4777K
0

最新回复(0)