首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αt为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+αt,β+α2,…,β+αt线性无关.
设α1,α2,…,αt为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+αt,β+α2,…,β+αt线性无关.
admin
2018-05-25
44
问题
设α
1
,α
2
,…,α
t
为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+α
t
,β+α
2
,…,β+α
t
线性无关.
选项
答案
由α
1
,α
2
,…,α
t
线性无关=>β,α
1
,α
2
,…,α
t
线性无关.令kβ+k
1
(β+α
1
)+k
2
(β+α
2
)+…+k
t
(β+α
t
)=0.即(k+k
1
+…+k
t
)β+k
1
α
1
+…+k
t
α
t
=0,∵β,α
1
,α
2
,…,α
t
线性无关 [*]=>k=k
1
=…=k,=0.∴β,β+α
1
,β+α
2
,…,β+α
t
线性无关
解析
转载请注明原文地址:https://kaotiyun.com/show/8EW4777K
0
考研数学三
相关试题推荐
试证明:曲线y=恰有三个拐点,且位于同一条直线上.
设f(x)=试确定常数a,b,c,使f(x)在x=0点处连续且可导.
[*]+C,其中C为任意常数
设φ(x)是以2π为周期的连续函数,且φˊ(x)=φ(x),φ(0)=0.(1)求方程yˊ+ysinx=φ(x)ecosx的通解;(2)方程是否有以2π为周期的解?若有,请写出所需条件;若没有,请说明理由.
设a>0,函数f(x)在[0,+∞)上连续有界.证明:微分方程yˊ+ay=f(x)的解在[0,+∞)上有界.
已知B是n阶矩阵,满足B2=E(此时矩阵B称为对合矩阵).求B的特征值的取值范围.
设有4阶方阵A满足条件|3E+A|=0,AAT=2E,|A|<0,其中E是4阶单位阵.求方阵A的伴随矩阵A*的一个特征值。
设A为n阶正定矩阵.证明:存在唯一正定矩阵H,使得A=H2.
随机试题
皮下注射的外文缩写是
细菌缺乏哪种结构仍然可以存活( )
急性肾小球肾炎风水相搏证的用方是急性肾小球肾炎水气上凌心肺证的用方是
正台阶工作面(下行分层)施工法按照硐室的高度,整个断面可分为2个以上分层,每分层的高度以()m为宜。
有煤与瓦斯突出危险的工作面,宜选用()。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定规律性。()
曾几何时,网络被视为只言片语的集散地、道听途说的原产地。这些对网络的陈旧认识,正在随着网络的发展而逐步被抛弃。今天,我国网民的数量已超过1.5亿因特网全面渗入中国人的日常生活,网络文化产业正在赶上并超过传统文化产业的规模,网络文化变得日益丰富,网络理性的力
在美国,比较复杂的民事审判往往超过陪审团的理解力,结果,陪审团对此作出的决定经常是错误的。因此,有人建议,涉及较复杂的民事审判由法官而不是陪审团来决定,将提高司法部门的服务质量。上述建议依据下列哪项假设?
KingJuanCarlosofSpainonceinsisted"kingsdon’tabdicate,theydieintheirsleep."Butembarrassingscandalsandthepopul
A.ambitiousB.appealstoC.contactsD.expectE.easilyF.worksG.consultingH.recruitI.turnstoJ.settledK.e
最新回复
(
0
)